AlyxTeam's picture
feat: 渚濊禆瀹夎鏂规硶
a183b63
import spaces
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
import subprocess
import os
# os.system("pip install dashscope")
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
subprocess.run("pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True)
kwargs = {}
"""
https://hugging-face.cn/docs/transformers/quantization/bitsandbytes
"""
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_use_double_quant=True,
# bnb_4bit_compute_dtype=torch.bfloat16,
# )
# quantization_config = BitsAndBytesConfig(
# load_in_8bit=True,
# # llm_int8_enable_fp32_cpu_offload=True,
# )
# kwargs = { "quantization_config": quantization_config, "low_cpu_mem_usage": True }
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16, **kwargs).cuda()
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
modelx = model
if len(message) < 1:
message = "write a quick sort algorithm in python."
messages = [
{ "role": "user", "content": message }
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(modelx.device)
outputs = modelx.generate(inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_k=50, top_p=top_p, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
return tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# @spaces.GPU
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# if len(message) < 1:
# message = "write a quick sort algorithm in python."
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/main/docs/gradio/chatinterface
"""
css = """
#msg_input {
flex-grow: 7;
}
"""
demo = gr.ChatInterface(
fn=respond,
textbox=gr.Textbox(elem_id="msg_input", placeholder="write a quick sort algorithm in python."),
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
css=css,
)
if __name__ == "__main__":
demo.launch()