Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
from transformers import AutoModel | |
from numpy.linalg import norm | |
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b)) | |
model1 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-code", trust_remote_code=True) | |
model2 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-en", trust_remote_code=True) | |
model3 = AutoModel.from_pretrained("jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True) | |
def generate(input1, input2): | |
if len(input1) < 1: | |
input1 = "How do I access the index while iterating over a sequence with a for loop?" | |
if len(input2) < 1: | |
input2 = "# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)" | |
embeddings1 = model1.encode( | |
[ | |
input1, | |
input2, | |
] | |
) | |
embeddings2 = model2.encode( | |
[ | |
input1, | |
input2, | |
] | |
) | |
embeddings3 = model3.encode( | |
[ | |
input1, | |
input2, | |
] | |
) | |
return cos_sim(embeddings1[0], embeddings1[1]), cos_sim(embeddings2[0], embeddings2[1]), cos_sim(embeddings3[0], embeddings3[1]) | |
gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Text(label="input1", placeholder="How do I access the index while iterating over a sequence with a for loop?"), | |
gr.Text(label="input2", placeholder="# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n print(idx, x)"), | |
], | |
outputs=[ | |
gr.Text(label="jina-embeddings-v2-base-code"), | |
gr.Text(label="jina-embeddings-v2-base-en"), | |
gr.Text(label="jina-embeddings-v2-base-zh"), | |
], | |
).launch() |