Spaces:
Runtime error
Runtime error
File size: 23,714 Bytes
b87f798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
"""Module to analyze audio samples.
"""
import argparse
import datetime
import json
import operator
import os
import sys
from multiprocessing import Pool, freeze_support
import numpy as np
import audio
import config as cfg
import model
import species
import utils
import subprocess
import pathlib
def load_codes():
"""Loads the eBird codes.
Returns:
A dictionary containing the eBird codes.
"""
with open(cfg.CODES_FILE, "r") as cfile:
codes = json.load(cfile)
return codes
def save_result_file(r: dict[str, list], path: str, afile_path: str):
"""Saves the results to the hard drive.
Args:
r: The dictionary with {segment: scores}.
path: The path where the result should be saved.
afile_path: The path to audio file.
"""
# Make folder if it doesn't exist
if os.path.dirname(path):
os.makedirs(os.path.dirname(path), exist_ok=True)
# Selection table
out_string = ""
if cfg.RESULT_TYPE == "table":
# Raven selection header
header = "Selection\tView\tChannel\tBegin Time (s)\tEnd Time (s)\tSpecies Code\tCommon Name\tConfidence\n"
selection_id = 0
# Write header
out_string += header
# Extract valid predictions for every timestamp
for timestamp in get_sorted_timestamps(r):
rstring = ""
start, end = timestamp.split("-", 1)
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
selection_id += 1
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += "{}\tSpectrogram 1\t1\t{}\t{}\t{}\t{}\t{:.4f}\n".format(
selection_id,
start,
end,
cfg.CODES[c[0]] if c[0] in cfg.CODES else c[0],
label.split("_", 1)[-1],
c[1],
)
# Write result string to file
out_string += rstring
elif cfg.RESULT_TYPE == "audacity":
# Audacity timeline labels
for timestamp in get_sorted_timestamps(r):
rstring = ""
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += "{}\t{}\t{:.4f}\n".format(timestamp.replace("-", "\t"), label.replace("_", ", "), c[1])
# Write result string to file
out_string += rstring
elif cfg.RESULT_TYPE == "r":
# Output format for R
header = ("filepath,start,end,scientific_name,common_name,confidence,lat,lon,week,"
"overlap,sensitivity,min_conf,species_list,model")
out_string += header
for timestamp in get_sorted_timestamps(r):
rstring = ""
start, end = timestamp.split("-", 1)
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += "\n{},{},{},{},{},{:.4f},{:.4f},{:.4f},{},{},{},{},{},{}".format(
afile_path,
start,
end,
label.split("_", 1)[0],
label.split("_", 1)[-1],
c[1],
cfg.LATITUDE,
cfg.LONGITUDE,
cfg.WEEK,
cfg.SIG_OVERLAP,
(1.0 - cfg.SIGMOID_SENSITIVITY) + 1.0,
cfg.MIN_CONFIDENCE,
cfg.SPECIES_LIST_FILE,
os.path.basename(cfg.MODEL_PATH),
)
# Write result string to file
out_string += rstring
elif cfg.RESULT_TYPE == "kaleidoscope":
# Output format for kaleidoscope
header = ("INDIR,FOLDER,IN FILE,OFFSET,DURATION,scientific_name,"
"common_name,confidence,lat,lon,week,overlap,sensitivity")
out_string += header
folder_path, filename = os.path.split(afile_path)
parent_folder, folder_name = os.path.split(folder_path)
for timestamp in get_sorted_timestamps(r):
rstring = ""
start, end = timestamp.split("-", 1)
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += "\n{},{},{},{},{},{},{},{:.4f},{:.4f},{:.4f},{},{},{}".format(
parent_folder.rstrip("/"),
folder_name,
filename,
start,
float(end) - float(start),
label.split("_", 1)[0],
label.split("_", 1)[-1],
c[1],
cfg.LATITUDE,
cfg.LONGITUDE,
cfg.WEEK,
cfg.SIG_OVERLAP,
(1.0 - cfg.SIGMOID_SENSITIVITY) + 1.0,
)
# Write result string to file
out_string += rstring
else:
# CSV output file
header = "Start (s),End (s),Scientific name,Common name,Confidence\n"
# Write header
out_string += header
for timestamp in get_sorted_timestamps(r):
rstring = ""
for c in r[timestamp]:
start, end = timestamp.split("-", 1)
if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += "{},{},{},{},{:.4f}\n".format(start, end, label.split("_", 1)[0],
label.split("_", 1)[-1], c[1])
# Write result string to file
out_string += rstring
# Save as file
with open(path, "w", encoding="utf-8") as rfile:
rfile.write(out_string)
return out_string
def get_sorted_timestamps(results: dict[str, list]):
"""Sorts the results based on the segments.
Args:
results: The dictionary with {segment: scores}.
Returns:
Returns the sorted list of segments and their scores.
"""
return sorted(results, key=lambda t: float(t.split("-", 1)[0]))
def get_raw_audio_from_file(fpath: str):
"""Reads an audio file.
Reads the file and splits the signal into chunks.
Args:
fpath: Path to the audio file.
Returns:
The signal split into a list of chunks.
"""
# Open file
sig, rate = audio.openAudioFile(fpath, cfg.SAMPLE_RATE)
# Split into raw audio chunks
chunks = audio.splitSignal(sig, rate, cfg.SIG_LENGTH, cfg.SIG_OVERLAP, cfg.SIG_MINLEN)
return chunks
def predict(samples):
"""Predicts the classes for the given samples.
Args:
samples: Samples to be predicted.
Returns:
The prediction scores.
"""
# Prepare sample and pass through model
data = np.array(samples, dtype="float32")
prediction = model.predict(data)
# Logits or sigmoid activations?
if cfg.APPLY_SIGMOID:
prediction = model.flat_sigmoid(np.array(prediction), sensitivity=-cfg.SIGMOID_SENSITIVITY)
return prediction
def analyze_file(item):
"""Analyzes a file.
Predicts the scores for the file and saves the results.
Args:
item: Tuple containing (file path, config)
Returns:
The `True` if the file was analyzed successfully.
"""
# Get file path and restore cfg
fpath: str = item[0]
cfg.set_config(item[1])
# Start time
start_time = datetime.datetime.now()
# Status
print(f"Analyzing {fpath}", flush=True)
try:
# Open audio file and split into 3-second chunks
chunks = get_raw_audio_from_file(fpath)
# If no chunks, show error and skip
except Exception as ex:
print(f"Error: Cannot open audio file {fpath}", flush=True)
utils.writeErrorLog(ex)
return False
# Process each chunk
try:
start, end = 0, cfg.SIG_LENGTH
results = {}
samples = []
timestamps = []
for chunk_index, chunk in enumerate(chunks):
# Add to batch
samples.append(chunk)
timestamps.append([start, end])
# Advance start and end
start += cfg.SIG_LENGTH - cfg.SIG_OVERLAP
end = start + cfg.SIG_LENGTH
# Check if batch is full or last chunk
if len(samples) < cfg.BATCH_SIZE and chunk_index < len(chunks) - 1:
continue
# Predict
prediction = predict(samples)
# Add to results
for i in range(len(samples)):
# Get timestamp
s_start, s_end = timestamps[i]
# Get prediction
pred = prediction[i]
# Assign scores to labels
p_labels = zip(cfg.LABELS, pred)
# Sort by score
p_sorted = sorted(p_labels, key=operator.itemgetter(1), reverse=True)
# Store top 5 results and advance indices
results[str(s_start) + "-" + str(s_end)] = p_sorted
# Clear batch
samples = []
timestamps = []
except Exception as ex:
# Write error log
print(f"Error: Cannot analyze audio file {fpath}.\n", flush=True)
utils.writeErrorLog(ex)
return False
# Save as selection table
try:
# We have to check if output path is a file or directory
if not cfg.OUTPUT_PATH.rsplit(".", 1)[-1].lower() in ["txt", "csv"]:
rpath = fpath.replace(cfg.INPUT_PATH, "")
rpath = rpath[1:] if rpath[0] in ["/", "\\"] else rpath
# Make target directory if it doesn't exist
rdir = os.path.join(cfg.OUTPUT_PATH, os.path.dirname(rpath))
os.makedirs(rdir, exist_ok=True)
if cfg.RESULT_TYPE == "table":
rtype = "bat.selection.table.txt"
elif cfg.RESULT_TYPE == "audacity":
rtype = ".bat.results.txt"
else:
rtype = ".bat.results.csv"
out_string = save_result_file(results, os.path.join(cfg.OUTPUT_PATH, rpath.rsplit(".", 1)[0] + rtype), fpath)
else:
out_string = save_result_file(results, cfg.OUTPUT_PATH, fpath)
# Save as file
with open(cfg.OUTPUT_PATH + "Results.csv", "a", encoding="utf-8") as rfile:
postString = out_string.split("\n", 1)[1]
# rfile.write(fpath.join(postString.splitlines(True)))
rfile.write("\n"+fpath+"\n")
rfile.write(postString)
except Exception as ex:
# Write error log
print(f"Error: Cannot save result for {fpath}.\n", flush=True)
utils.writeErrorLog(ex)
return False
delta_time = (datetime.datetime.now() - start_time).total_seconds()
print("Finished {} in {:.2f} seconds".format(fpath, delta_time), flush=True)
return True
def set_analysis_location():
if args.area not in ["Bavaria", "Sweden", "EU", "Scotland", "UK", "USA","MarinCounty"]:
exit(code="Unknown location option.")
else:
args.lat = -1
args.lon = -1
# args.locale = "en"
if args.area == "Bavaria":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
args.locale = "de"
elif args.area == "EU":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
elif args.area == "Sweden":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Sweden-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Sweden-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
args.locale = "se"
elif args.area == "Scotland":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
elif args.area == "UK":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
elif args.area == "USA":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
elif args.area == "MarinCounty":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-MarinCounty-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-MarinCounty-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
else:
cfg.CUSTOM_CLASSIFIER = None
def set_paths():
# Set paths relative to script path (requested in #3)
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
cfg.MODEL_PATH = os.path.join(script_dir, cfg.MODEL_PATH)
cfg.LABELS_FILE = os.path.join(script_dir, cfg.LABELS_FILE)
cfg.TRANSLATED_LABELS_PATH = os.path.join(script_dir, cfg.TRANSLATED_LABELS_PATH)
cfg.MDATA_MODEL_PATH = os.path.join(script_dir, cfg.MDATA_MODEL_PATH)
cfg.CODES_FILE = os.path.join(script_dir, cfg.CODES_FILE)
cfg.ERROR_LOG_FILE = os.path.join(script_dir, cfg.ERROR_LOG_FILE)
cfg.BAT_CLASSIFIER_LOCATION = os.path.join(script_dir, cfg.BAT_CLASSIFIER_LOCATION)
cfg.INPUT_PATH = args.i
cfg.OUTPUT_PATH = args.o
def set_custom_classifier():
if args.classifier is None:
return
cfg.CUSTOM_CLASSIFIER = args.classifier # we treat this as absolute path, so no need to join with dirname
cfg.LABELS_FILE = args.classifier.replace(".tflite", "_Labels.txt") # same for labels file
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
args.lat = -1
args.lon = -1
# args.locale = "en"
def add_parser_arguments():
parser.add_argument("--area",
default="EU",
help="Location. Values in ['Bavaria', 'EU', 'Sweden','Scotland', 'UK', 'USA', 'MarinCounty']. "
"Defaults to Bavaria.")
parser.add_argument("--sensitivity",
type=float,
default=1.0,
help="Detection sensitivity; Higher values result in higher sensitivity. "
"Values in [0.5, 1.5]. Defaults to 1.0."
)
parser.add_argument("--min_conf",
type=float,
default=0.7,
help="Minimum confidence threshold. Values in [0.01, 0.99]. Defaults to 0.1.")
parser.add_argument("--overlap",
type=float,
default=0.0,
help="Overlap of prediction segments. Values in [0.0, 2.9]. Defaults to 0.0."
)
parser.add_argument("--rtype",
default="csv",
help="Specifies output format. Values in ['table', 'audacity', 'r', 'kaleidoscope', 'csv']. "
"Defaults to 'csv' (Raven selection table)."
)
parser.add_argument("--threads",
type=int,
default=4,
help="Number of CPU threads.")
parser.add_argument("--batchsize",
type=int,
default=1,
help="Number of samples to process at the same time. Defaults to 1."
)
parser.add_argument("--sf_thresh",
type=float,
default=0.03,
help="Minimum species occurrence frequency threshold for location filter. "
"Values in [0.01, 0.99]. Defaults to 0.03."
)
parser.add_argument("--segment",
default="off",
help="Generate audio files containing the detected segments. "
)
parser.add_argument("--spectrum",
default="off",
help="Generate mel spectrograms files containing the detected segments. "
)
parser.add_argument("--i",
default=cfg.INPUT_PATH_SAMPLES, # "put-your-files-here/",
help="Path to input file or folder. If this is a file, --o needs to be a file too.")
parser.add_argument("--o",
default=cfg.OUTPUT_PATH_SAMPLES,
help="Path to output file or folder. If this is a file, --i needs to be a file too.")
parser.add_argument("--classifier",
default=None,
help="Path to custom trained classifier. Defaults to None. "
"If set, --lat, --lon and --locale are ignored."
)
parser.add_argument("--slist",
default="",
help='Path to species list file or folder. If folder is provided, species list needs to be '
'named "species_list.txt". If lat and lon are provided, this list will be ignored.'
)
parser.add_argument("--lat",
type=float,
default=-1,
help="DISABLED. Set -1 to ignore.")
parser.add_argument("--lon",
type=float,
default=-1,
help="DISABLED. Set -1 to ignore.")
parser.add_argument("--week",
type=int,
default=-1,
help="DISABLED. Set -1 for year-round species list."
)
parser.add_argument("--locale",
default="en",
help="DISABLED. Defaults to 'en'."
)
def load_ebird_codes():
cfg.CODES = load_codes()
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
def load_species_list():
cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK = args.lat, args.lon, args.week
cfg.LOCATION_FILTER_THRESHOLD = max(0.01, min(0.99, float(args.sf_thresh)))
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
if cfg.LATITUDE == -1 and cfg.LONGITUDE == -1:
if not args.slist:
cfg.SPECIES_LIST_FILE = None
else:
cfg.SPECIES_LIST_FILE = os.path.join(script_dir, args.slist)
if os.path.isdir(cfg.SPECIES_LIST_FILE):
cfg.SPECIES_LIST_FILE = os.path.join(cfg.SPECIES_LIST_FILE, "species_list.txt")
cfg.SPECIES_LIST = utils.readLines(cfg.SPECIES_LIST_FILE)
else:
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = species.getSpeciesList(cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK, cfg.LOCATION_FILTER_THRESHOLD)
if not cfg.SPECIES_LIST:
print(f"Species list contains {len(cfg.LABELS)} species")
else:
print(f"Species list contains {len(cfg.SPECIES_LIST)} species")
def parse_input_files():
if os.path.isdir(cfg.INPUT_PATH):
cfg.FILE_LIST = utils.collect_audio_files(cfg.INPUT_PATH)
print(f"Found {len(cfg.FILE_LIST)} files to analyze")
else:
cfg.FILE_LIST = [cfg.INPUT_PATH]
def set_analysis_parameters():
cfg.MIN_CONFIDENCE = max(0.01, min(0.99, float(args.min_conf)))
cfg.SIGMOID_SENSITIVITY = max(0.5, min(1.0 - (float(args.sensitivity) - 1.0), 1.5))
cfg.SIG_OVERLAP = max(0.0, min(2.9, float(args.overlap)))
cfg.BATCH_SIZE = max(1, int(args.batchsize))
def set_hardware_parameters():
if os.path.isdir(cfg.INPUT_PATH):
cfg.CPU_THREADS = max(1, int(args.threads))
cfg.TFLITE_THREADS = 1
else:
cfg.CPU_THREADS = 1
cfg.TFLITE_THREADS = max(1, int(args.threads))
def load_translated_labels():
cfg.TRANSLATED_LABELS_PATH = cfg.TRANSLATED_BAT_LABELS_PATH
lfile = os.path.join(cfg.TRANSLATED_LABELS_PATH,
os.path.basename(cfg.LABELS_FILE).replace(".txt", "_{}.txt".format(args.locale))
)
if args.locale not in ["en"] and os.path.isfile(lfile):
cfg.TRANSLATED_LABELS = utils.readLines(lfile)
else:
cfg.TRANSLATED_LABELS = cfg.LABELS
def check_result_type():
cfg.RESULT_TYPE = args.rtype.lower()
if cfg.RESULT_TYPE not in ["table", "audacity", "r", "kaleidoscope", "csv"]:
cfg.RESULT_TYPE = "csv"
print("Unknown output option. Using csv output.")
if __name__ == "__main__":
freeze_support() # Freeze support for executable
parser = argparse.ArgumentParser(description="Analyze audio files with BattyBirdNET")
add_parser_arguments()
args = parser.parse_args()
set_paths()
load_ebird_codes()
set_custom_classifier()
check_result_type()
set_analysis_location()
load_translated_labels()
load_species_list()
parse_input_files()
set_analysis_parameters()
set_hardware_parameters()
# Add config items to each file list entry.
# We have to do this for Windows which does not
# support fork() and thus each process has to
# have its own config. USE LINUX!
flist = [(f, cfg.get_config()) for f in cfg.FILE_LIST]
# Analyze files
if cfg.CPU_THREADS < 2:
for entry in flist:
analyze_file(entry)
else:
with Pool(cfg.CPU_THREADS) as p:
p.map(analyze_file, flist)
if args.segment == "on" or args.spectrum == "on":
subprocess.run(["python3", "segments.py"])
if args.spectrum == "on":
# iterate through the segements folder subfolders, call the plotter
print("Spectrums in progress ...")
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
root_dir = pathlib.Path(os.path.join(script_dir, args.i + "/segments"))
for dir_name in os.listdir(root_dir):
f = os.path.join(root_dir, dir_name)
if not os.path.isfile(f):
print("Spectrum in progres for: " + f)
cmd = ['python3', "batchspec.py", f, f]
subprocess.run(cmd)
# A few examples to test
# python3 analyze.py --i example/ --o example/ --slist example/ --min_conf 0.5 --threads 4
# python3 analyze.py --i example/soundscape.wav --o example/soundscape.BirdNET.selection.table.txt --slist example/species_list.txt --threads 8
# python3 analyze.py --i example/ --o example/ --lat 42.5 --lon -76.45 --week 4 --sensitivity 1.0 --rtype table --locale de
|