File size: 8,371 Bytes
b87f798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c3472
b87f798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d25c31f
 
b87f798
 
 
 
 
 
 
 
 
 
7bd8750
 
b87f798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#################
# Misc settings #
#################

# Random seed for gaussian noise
RANDOM_SEED = 42

##########################
# Model paths and config #
##########################
# These BirdNET  models are necessary also for detecting bats as we use their embeddings and classify
# them to identify the bats.
# MODEL_PATH = 'checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Model' # This will load the protobuf model
MODEL_PATH = 'checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Model_FP32.tflite'
MDATA_MODEL_PATH = 'checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_MData_Model_FP16.tflite'
LABELS_FILE = 'checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Labels.txt'
TRANSLATED_LABELS_PATH = 'labels/V2.4'
TRANSLATED_BAT_LABELS_PATH = 'labels/bats/'

# Path to custom trained classifier
# If None, no custom classifier will be used
# Make sure to set the LABELS_FILE above accordingly
CUSTOM_CLASSIFIER = None

##################
# Audio settings #
##################

# BirdNET uses a sample rate of 48kHz, so the model input size is
# (batch size, 48000 kHz * 3 seconds) = (1, 144000)
# Recordings will be resampled automatically.
# For bats we use: 144000 for 1 sec.
# Note that only SIG_LENGTH * SAMPLING_RATE = 144000 combinations will work,
# values possible e.g. 144000 240000 360000 check your classifier frequency!
SAMPLE_RATE: int = 256000

# We're using 1-second chunks
SIG_LENGTH: float = 144000 / SAMPLE_RATE

# Define overlap between consecutive chunks < SIG_LENGTH; 0 = no overlap
SIG_OVERLAP: float = SIG_LENGTH / 4.0

# Define minimum length of audio chunk for prediction, 
# chunks shorter than SIG_LENGTH seconds will be padded with zeros
SIG_MINLEN: float = SIG_LENGTH / 3.0

#####################
# Metadata settings #
#####################
# These settings are currently not in use for bat detection
LATITUDE = -1
LONGITUDE = -1
WEEK = -1
LOCATION_FILTER_THRESHOLD = 0.03

######################
# Inference settings #
######################

# If None or empty file, no custom species list will be used
# Note: Entries in this list have to match entries from the LABELS_FILE
# We use the 2021 eBird taxonomy for species names (Clements list)
CODES_FILE = 'eBird_taxonomy_codes_2021E.json'
SPECIES_LIST_FILE = 'example/species_list.txt'

# File input path and output path for selection tables
INPUT_PATH: str = ''
OUTPUT_PATH: str = ''

# Used for bats - the files here are supposed to be analyzed by default setting
INPUT_PATH_SAMPLES: str = 'put-your-files-here/'
OUTPUT_PATH_SAMPLES: str = 'put-your-files-here/results/'
BAT_CLASSIFIER_LOCATION: str = 'checkpoints/bats/v1.0'

ALLOWED_FILETYPES = ['wav', 'flac', 'mp3', 'ogg', 'm4a']

# Number of threads to use for inference.
# Can be as high as number of CPUs in your system
CPU_THREADS: int = 2
TFLITE_THREADS: int = 2

# False will output logits, True will convert to sigmoid activations
APPLY_SIGMOID: bool = True
SIGMOID_SENSITIVITY: float = 1.0

# Minimum confidence score to include in selection table 
# (be aware: if APPLY_SIGMOID = False, this no longer represents 
# probabilities and needs to be adjusted)
MIN_CONFIDENCE: float = 0.6

# Number of samples to process at the same time. Higher values can increase
# processing speed, but will also increase memory usage.
# Might only be useful for GPU inference.
BATCH_SIZE: int = 1

# Specifies the output format. 'table' denotes a Raven selection table,
# 'audacity' denotes a TXT file with the same format as Audacity timeline labels
# 'csv' denotes a CSV file with start, end, species and confidence.
RESULT_TYPE = 'csv'

#####################
# Training settings #
#####################

# Training data path
TRAIN_DATA_PATH = 'train_data/'

# Number of epochs to train for
TRAIN_EPOCHS: int = 100

# Batch size for training
TRAIN_BATCH_SIZE: int = 32

# Learning rate for training
TRAIN_LEARNING_RATE: float = 0.01

# Number of hidden units in custom classifier
# If >0, a two-layer classifier will be trained
TRAIN_HIDDEN_UNITS: int = 0

#####################
# Misc runtime vars #
#####################
CODES = {}
LABELS: list[str] = []
TRANSLATED_LABELS: list[str] = []
SPECIES_LIST: list[str] = []
ERROR_LOG_FILE: str = 'error_log.txt'
FILE_LIST = []
FILE_STORAGE_PATH = ''


######################
# Get and set config #
######################

def get_config():
    return {
        'RANDOM_SEED': RANDOM_SEED,
        'MODEL_PATH': MODEL_PATH,
        'MDATA_MODEL_PATH': MDATA_MODEL_PATH,
        'LABELS_FILE': LABELS_FILE,
        'CUSTOM_CLASSIFIER': CUSTOM_CLASSIFIER,
        'SAMPLE_RATE': SAMPLE_RATE,
        'SIG_LENGTH': SIG_LENGTH,
        'SIG_OVERLAP': SIG_OVERLAP,
        'SIG_MINLEN': SIG_MINLEN,
        'LATITUDE': LATITUDE,
        'LONGITUDE': LONGITUDE,
        'WEEK': WEEK,
        'LOCATION_FILTER_THRESHOLD': LOCATION_FILTER_THRESHOLD,
        'CODES_FILE': CODES_FILE,
        'SPECIES_LIST_FILE': SPECIES_LIST_FILE,
        'INPUT_PATH': INPUT_PATH,
        'OUTPUT_PATH': OUTPUT_PATH,
        'CPU_THREADS': CPU_THREADS,
        'TFLITE_THREADS': TFLITE_THREADS,
        'APPLY_SIGMOID': APPLY_SIGMOID,
        'SIGMOID_SENSITIVITY': SIGMOID_SENSITIVITY,
        'MIN_CONFIDENCE': MIN_CONFIDENCE,
        'BATCH_SIZE': BATCH_SIZE,
        'RESULT_TYPE': RESULT_TYPE,
        'TRAIN_DATA_PATH': TRAIN_DATA_PATH,
        'TRAIN_EPOCHS': TRAIN_EPOCHS,
        'TRAIN_BATCH_SIZE': TRAIN_BATCH_SIZE,
        'TRAIN_LEARNING_RATE': TRAIN_LEARNING_RATE,
        'TRAIN_HIDDEN_UNITS': TRAIN_HIDDEN_UNITS,
        'CODES': CODES,
        'LABELS': LABELS,
        'TRANSLATED_LABELS': TRANSLATED_LABELS,
        'SPECIES_LIST': SPECIES_LIST,
        'ERROR_LOG_FILE': ERROR_LOG_FILE,
        'INPUT_PATH_SAMPLES': INPUT_PATH_SAMPLES,
        'OUTPUT_PATH_SAMPLES': OUTPUT_PATH_SAMPLES,
        'BAT_CLASSIFIER_LOCATION': BAT_CLASSIFIER_LOCATION,
        'TRANSLATED_BAT_LABELS_PATH': TRANSLATED_BAT_LABELS_PATH
    }


def set_config(c):
    global RANDOM_SEED
    global MODEL_PATH
    global MDATA_MODEL_PATH
    global LABELS_FILE
    global CUSTOM_CLASSIFIER
    global SAMPLE_RATE
    global SIG_LENGTH
    global SIG_OVERLAP
    global SIG_MINLEN
    global LATITUDE
    global LONGITUDE
    global WEEK
    global LOCATION_FILTER_THRESHOLD
    global CODES_FILE
    global SPECIES_LIST_FILE
    global INPUT_PATH
    global OUTPUT_PATH
    global CPU_THREADS
    global TFLITE_THREADS
    global APPLY_SIGMOID
    global SIGMOID_SENSITIVITY
    global MIN_CONFIDENCE
    global BATCH_SIZE
    global RESULT_TYPE
    global TRAIN_DATA_PATH
    global TRAIN_EPOCHS
    global TRAIN_BATCH_SIZE
    global TRAIN_LEARNING_RATE
    global TRAIN_HIDDEN_UNITS
    global CODES
    global LABELS
    global TRANSLATED_LABELS
    global SPECIES_LIST
    global ERROR_LOG_FILE
    global INPUT_PATH_SAMPLES
    global OUTPUT_PATH_SAMPLES
    global BAT_CLASSIFIER_LOCATION
    global TRANSLATED_BAT_LABELS_PATH

    RANDOM_SEED = c['RANDOM_SEED']
    MODEL_PATH = c['MODEL_PATH']
    MDATA_MODEL_PATH = c['MDATA_MODEL_PATH']
    LABELS_FILE = c['LABELS_FILE']
    CUSTOM_CLASSIFIER = c['CUSTOM_CLASSIFIER']
    SAMPLE_RATE = c['SAMPLE_RATE']
    SIG_LENGTH = c['SIG_LENGTH']
    SIG_OVERLAP = c['SIG_OVERLAP']
    SIG_MINLEN = c['SIG_MINLEN']
    LATITUDE = c['LATITUDE']
    LONGITUDE = c['LONGITUDE']
    WEEK = c['WEEK']
    LOCATION_FILTER_THRESHOLD = c['LOCATION_FILTER_THRESHOLD']
    CODES_FILE = c['CODES_FILE']
    SPECIES_LIST_FILE = c['SPECIES_LIST_FILE']
    INPUT_PATH = c['INPUT_PATH']
    OUTPUT_PATH = c['OUTPUT_PATH']
    CPU_THREADS = c['CPU_THREADS']
    TFLITE_THREADS = c['TFLITE_THREADS']
    APPLY_SIGMOID = c['APPLY_SIGMOID']
    SIGMOID_SENSITIVITY = c['SIGMOID_SENSITIVITY']
    MIN_CONFIDENCE = c['MIN_CONFIDENCE']
    BATCH_SIZE = c['BATCH_SIZE']
    RESULT_TYPE = c['RESULT_TYPE']
    TRAIN_DATA_PATH = c['TRAIN_DATA_PATH']
    TRAIN_EPOCHS = c['TRAIN_EPOCHS']
    TRAIN_BATCH_SIZE = c['TRAIN_BATCH_SIZE']
    TRAIN_LEARNING_RATE = c['TRAIN_LEARNING_RATE']
    TRAIN_HIDDEN_UNITS = c['TRAIN_HIDDEN_UNITS']
    CODES = c['CODES']
    LABELS = c['LABELS']
    TRANSLATED_LABELS = c['TRANSLATED_LABELS']
    SPECIES_LIST = c['SPECIES_LIST']
    ERROR_LOG_FILE = c['ERROR_LOG_FILE']
    INPUT_PATH_SAMPLES = c['INPUT_PATH_SAMPLES']
    OUTPUT_PATH_SAMPLES = c['OUTPUT_PATH_SAMPLES']
    BAT_CLASSIFIER_LOCATION = c['BAT_CLASSIFIER_LOCATION']
    TRANSLATED_BAT_LABELS_PATH = c['TRANSLATED_BAT_LABELS_PATH']