Spaces:
Runtime error
Runtime error
File size: 11,042 Bytes
b87f798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
"""Contains functions to use the BirdNET models.
"""
import os
import warnings
import numpy as np
import config as cfg
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
os.environ["CUDA_VISIBLE_DEVICES"] = ""
warnings.filterwarnings("ignore")
# Import TFLite from runtime or Tensorflow;
# import Keras if protobuf model;
# NOTE: we have to use TFLite if we want to use
# the metadata model or want to extract embeddings
try:
import tflite_runtime.interpreter as tflite
except ModuleNotFoundError:
from tensorflow import lite as tflite
if not cfg.MODEL_PATH.endswith(".tflite"):
from tensorflow import keras
INTERPRETER: tflite.Interpreter = None
C_INTERPRETER: tflite.Interpreter = None
M_INTERPRETER: tflite.Interpreter = None
PBMODEL = None
def loadModel(class_output=True):
"""Initializes the BirdNET Model.
Args:
class_output: Omits the last layer when False.
"""
global PBMODEL
global INTERPRETER
global INPUT_LAYER_INDEX
global OUTPUT_LAYER_INDEX
# Do we have to load the tflite or protobuf model?
if cfg.MODEL_PATH.endswith(".tflite"):
# Load TFLite model and allocate tensors.
INTERPRETER = tflite.Interpreter(model_path=cfg.MODEL_PATH, num_threads=cfg.TFLITE_THREADS)
INTERPRETER.allocate_tensors()
# Get input and output tensors.
input_details = INTERPRETER.get_input_details()
output_details = INTERPRETER.get_output_details()
# Get input tensor index
INPUT_LAYER_INDEX = input_details[0]["index"]
# Get classification output or feature embeddings
if class_output:
OUTPUT_LAYER_INDEX = output_details[0]["index"]
else:
OUTPUT_LAYER_INDEX = output_details[0]["index"] - 1
else:
# Load protobuf model
# Note: This will throw a bunch of warnings about custom gradients
# which we will ignore until TF lets us block them
PBMODEL = keras.models.load_model(cfg.MODEL_PATH, compile=False)
def loadCustomClassifier():
"""Loads the custom classifier."""
global C_INTERPRETER
global C_INPUT_LAYER_INDEX
global C_OUTPUT_LAYER_INDEX
# Load TFLite model and allocate tensors.
C_INTERPRETER = tflite.Interpreter(model_path=cfg.CUSTOM_CLASSIFIER, num_threads=cfg.TFLITE_THREADS)
C_INTERPRETER.allocate_tensors()
# Get input and output tensors.
input_details = C_INTERPRETER.get_input_details()
output_details = C_INTERPRETER.get_output_details()
# Get input tensor index
C_INPUT_LAYER_INDEX = input_details[0]["index"]
# Get classification output
C_OUTPUT_LAYER_INDEX = output_details[0]["index"]
def loadMetaModel():
"""Loads the model for species prediction.
Initializes the model used to predict species list, based on coordinates and week of year.
"""
global M_INTERPRETER
global M_INPUT_LAYER_INDEX
global M_OUTPUT_LAYER_INDEX
# Load TFLite model and allocate tensors.
M_INTERPRETER = tflite.Interpreter(model_path=cfg.MDATA_MODEL_PATH, num_threads=cfg.TFLITE_THREADS)
M_INTERPRETER.allocate_tensors()
# Get input and output tensors.
input_details = M_INTERPRETER.get_input_details()
output_details = M_INTERPRETER.get_output_details()
# Get input tensor index
M_INPUT_LAYER_INDEX = input_details[0]["index"]
M_OUTPUT_LAYER_INDEX = output_details[0]["index"]
def buildLinearClassifier(num_labels, input_size, hidden_units=0):
"""Builds a classifier.
Args:
num_labels: Output size.
input_size: Size of the input.
hidden_units: If > 0, creates another hidden layer with the given number of units.
Returns:
A new classifier.
"""
# import keras
from tensorflow import keras
# Build a simple one- or two-layer linear classifier
model = keras.Sequential()
# Input layer
model.add(keras.layers.InputLayer(input_shape=(input_size,)))
# Hidden layer
if hidden_units > 0:
model.add(keras.layers.Dense(hidden_units, activation="relu"))
# Classification layer
model.add(keras.layers.Dense(num_labels))
# Activation layer
model.add(keras.layers.Activation("sigmoid"))
return model
def trainLinearClassifier(classifier, x_train, y_train, epochs, batch_size, learning_rate, on_epoch_end=None):
"""Trains a custom classifier.
Trains a new classifier for BirdNET based on the given data.
Args:
classifier: The classifier to be trained.
x_train: Samples.
y_train: Labels.
epochs: Number of epochs to train.
batch_size: Batch size.
learning_rate: The learning rate during training.
on_epoch_end: Optional callback `function(epoch, logs)`.
Returns:
(classifier, history)
"""
# import keras
from tensorflow import keras
class FunctionCallback(keras.callbacks.Callback):
def __init__(self, on_epoch_end=None) -> None:
super().__init__()
self.on_epoch_end_fn = on_epoch_end
def on_epoch_end(self, epoch, logs=None):
if self.on_epoch_end_fn:
self.on_epoch_end_fn(epoch, logs)
# Set random seed
np.random.seed(cfg.RANDOM_SEED)
# Shuffle data
idx = np.arange(x_train.shape[0])
np.random.shuffle(idx)
x_train = x_train[idx]
y_train = y_train[idx]
# Random val split
x_val = x_train[int(0.8 * x_train.shape[0]) :]
y_val = y_train[int(0.8 * y_train.shape[0]) :]
# Early stopping
callbacks = [
keras.callbacks.EarlyStopping(monitor="val_loss", patience=5, restore_best_weights=True),
FunctionCallback(on_epoch_end=on_epoch_end),
]
# Cosine annealing lr schedule
lr_schedule = keras.experimental.CosineDecay(learning_rate, epochs * x_train.shape[0] / batch_size)
# Compile model
classifier.compile(
optimizer=keras.optimizers.Adam(learning_rate=lr_schedule),
loss="binary_crossentropy",
metrics=keras.metrics.Precision(top_k=1, name="prec"),
)
# Train model
history = classifier.fit(
x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_val, y_val), callbacks=callbacks
)
return classifier, history
def saveLinearClassifier(classifier, model_path, labels):
"""Saves a custom classifier on the hard drive.
Saves the classifier as a tflite model, as well as the used labels in a .txt.
Args:
classifier: The custom classifier.
model_path: Path the model will be saved at.
labels: List of labels used for the classifier.
"""
# Make folders
os.makedirs(os.path.dirname(model_path), exist_ok=True)
# Remove activation layer
classifier.pop()
# Save model as tflite
converter = tflite.TFLiteConverter.from_keras_model(classifier)
tflite_model = converter.convert()
open(model_path, "wb").write(tflite_model)
# Save labels
with open(model_path.replace(".tflite", "_Labels.txt"), "w") as f:
for label in labels:
f.write(label + "\n")
def predictFilter(lat, lon, week):
"""Predicts the probability for each species.
Args:
lat: The latitude.
lon: The longitude.
week: The week of the year [1-48]. Use -1 for yearlong.
Returns:
A list of probabilities for all species.
"""
global M_INTERPRETER
# Does interpreter exist?
if M_INTERPRETER == None:
loadMetaModel()
# Prepare mdata as sample
sample = np.expand_dims(np.array([lat, lon, week], dtype="float32"), 0)
# Run inference
M_INTERPRETER.set_tensor(M_INPUT_LAYER_INDEX, sample)
M_INTERPRETER.invoke()
return M_INTERPRETER.get_tensor(M_OUTPUT_LAYER_INDEX)[0]
def explore(lat: float, lon: float, week: int):
"""Predicts the species list.
Predicts the species list based on the coordinates and week of year.
Args:
lat: The latitude.
lon: The longitude.
week: The week of the year [1-48]. Use -1 for yearlong.
Returns:
A sorted list of tuples with the score and the species.
"""
# Make filter prediction
l_filter = predictFilter(lat, lon, week)
# Apply threshold
l_filter = np.where(l_filter >= cfg.LOCATION_FILTER_THRESHOLD, l_filter, 0)
# Zip with labels
l_filter = list(zip(l_filter, cfg.LABELS))
# Sort by filter value
l_filter = sorted(l_filter, key=lambda x: x[0], reverse=True)
return l_filter
def flat_sigmoid(x, sensitivity=-1):
return 1 / (1.0 + np.exp(sensitivity * np.clip(x, -15, 15)))
def predict(sample):
"""Uses the main net to predict a sample.
Args:
sample: Audio sample.
Returns:
The prediction scores for the sample.
"""
# Has custom classifier?
if cfg.CUSTOM_CLASSIFIER != None:
return predictWithCustomClassifier(sample)
global INTERPRETER
# Does interpreter or keras model exist?
if INTERPRETER == None and PBMODEL == None:
loadModel()
if PBMODEL == None:
# Reshape input tensor
INTERPRETER.resize_tensor_input(INPUT_LAYER_INDEX, [len(sample), *sample[0].shape])
INTERPRETER.allocate_tensors()
# Make a prediction (Audio only for now)
INTERPRETER.set_tensor(INPUT_LAYER_INDEX, np.array(sample, dtype="float32"))
INTERPRETER.invoke()
prediction = INTERPRETER.get_tensor(OUTPUT_LAYER_INDEX)
return prediction
else:
# Make a prediction (Audio only for now)
prediction = PBMODEL.predict(sample)
return prediction
def predictWithCustomClassifier(sample):
"""Uses the custom classifier to make a prediction.
Args:
sample: Audio sample.
Returns:
The prediction scores for the sample.
"""
global C_INTERPRETER
# Does interpreter exist?
if C_INTERPRETER == None:
loadCustomClassifier()
# Get embeddings
feature_vector = embeddings(sample)
# Reshape input tensor
C_INTERPRETER.resize_tensor_input(C_INPUT_LAYER_INDEX, [len(feature_vector), *feature_vector[0].shape])
C_INTERPRETER.allocate_tensors()
# Make a prediction
C_INTERPRETER.set_tensor(C_INPUT_LAYER_INDEX, np.array(feature_vector, dtype="float32"))
C_INTERPRETER.invoke()
prediction = C_INTERPRETER.get_tensor(C_OUTPUT_LAYER_INDEX)
return prediction
def embeddings(sample):
"""Extracts the embeddings for a sample.
Args:
sample: Audio samples.
Returns:
The embeddings.
"""
global INTERPRETER
# Does interpreter exist?
if INTERPRETER == None:
loadModel(False)
# Reshape input tensor
INTERPRETER.resize_tensor_input(INPUT_LAYER_INDEX, [len(sample), *sample[0].shape])
INTERPRETER.allocate_tensors()
# Extract feature embeddings
INTERPRETER.set_tensor(INPUT_LAYER_INDEX, np.array(sample, dtype="float32"))
INTERPRETER.invoke()
features = INTERPRETER.get_tensor(OUTPUT_LAYER_INDEX)
return features
|