File size: 23,730 Bytes
b87f798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17842a5
 
53fc875
b87f798
53fc875
b87f798
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
import concurrent.futures
import os
import sys
from multiprocessing import freeze_support
import gradio as gr
import webview
import bat_ident
import config as cfg
import segments
import utils
import logging
import librosa
logging.basicConfig(filename='bat_gui.log', encoding='utf-8', level=logging.DEBUG)

_WINDOW: webview.Window


_AREA_ONE = "EU"
_AREA_TWO = "Bavaria"
_AREA_THREE = "USA"
_AREA_FOUR = "Scotland"
_AREA_FIFE = "UK"

#
# MODEL part mixed with CONTROLER
#
OUTPUT_TYPE_MAP = {"Raven selection table": "table", "Audacity": "audacity", "R": "r", "CSV": "csv"}
ORIGINAL_MODEL_PATH = cfg.MODEL_PATH
ORIGINAL_MDATA_MODEL_PATH = cfg.MDATA_MODEL_PATH
ORIGINAL_LABELS_FILE = cfg.LABELS_FILE
ORIGINAL_TRANSLATED_LABELS_PATH = cfg.TRANSLATED_BAT_LABELS_PATH # cfg.TRANSLATED_LABELS_PATH

def analyzeFile_wrapper(entry):
    #return (entry[0], analyze.analyzeFile(entry))
    return (entry[0], bat_ident.analyze_file(entry))
def validate(value, msg):
    """Checks if the value ist not falsy.
    If the value is falsy, an error will be raised.
    Args:
        value: Value to be tested.
        msg: Message in case of an error.
    """
    if not value:
        raise gr.Error(msg)


def runBatchAnalysis(
    output_path,
    confidence,
    sensitivity,
    overlap,
    species_list_choice,
    locale,
    batch_size,
    threads,
    input_dir,
    output_type_radio,
    progress=gr.Progress(),
):
    validate(input_dir, "Please select a directory.")
    batch_size = int(batch_size)
    threads = int(threads)

    return runAnalysis(
        species_list_choice,
        None,
        output_path,
        confidence,
        sensitivity,
        overlap,
        output_type_radio,
        "en" if not locale else locale,
        batch_size,
        threads,
        input_dir,
        progress,
    )




def runSingleFileAnalysis(input_path,
                          confidence,
                          sensitivity,
                          overlap,
                          species_list_choice,
                          locale):
    validate(input_path, "Please select a file.")
    logging.info('first level')
    return runAnalysis(
        species_list_choice,
        input_path,
        None,
        confidence,
        sensitivity,
        overlap,
        "csv",
        "en" if not locale else locale,
        1,
        4,
        None,
        progress=None,
    )

def runAnalysis(
    species_list_choice: str,
    input_path: str,
    output_path: str | None,
    confidence: float,
    sensitivity: float,
    overlap: float,
    output_type: str,
    locale: str,
    batch_size: int,
    threads: int,
    input_dir: str,
    progress: gr.Progress | None,
):
    """Starts the analysis.
    Args:
        input_path: Either a file or directory.
        output_path: The output path for the result, if None the input_path is used
        confidence: The selected minimum confidence.
        sensitivity: The selected sensitivity.
        overlap: The selected segment overlap.
        species_list_choice: The choice for the species list.
        species_list_file: The selected custom species list file.
        lat: The selected latitude.
        lon: The selected longitude.
        week: The selected week of the year.
        use_yearlong: Use yearlong instead of week.
        sf_thresh: The threshold for the predicted species list.
        custom_classifier_file: Custom classifier to be used.
        output_type: The type of result to be generated.
        locale: The translation to be used.
        batch_size: The number of samples in a batch.
        threads: The number of threads to be used.
        input_dir: The input directory.
        progress: The gradio progress bar.
    """
    logging.info('second level')
    if progress is not None:
        progress(0, desc="Preparing ...")
    # locale = locale.lower()
    # Load eBird codes, labels
    #cfg.CODES = analyze.loadCodes()
    # cfg.LABELS = utils.readLines(ORIGINAL_LABELS_FILE)
    cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK = -1, -1, -1
    cfg.LOCATION_FILTER_THRESHOLD = 0.03
    script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
    cfg.BAT_CLASSIFIER_LOCATION = os.path.join(script_dir, cfg.BAT_CLASSIFIER_LOCATION)

    if species_list_choice == "Bavaria":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
        cfg.LATITUDE = -1
        cfg.LONGITUDE = -1
        cfg.SPECIES_LIST_FILE = None
        cfg.SPECIES_LIST = []
        locale = "de"

    elif species_list_choice == "EU":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
        cfg.LATITUDE = -1
        cfg.LONGITUDE = -1
        cfg.SPECIES_LIST_FILE = None
        cfg.SPECIES_LIST = []
        locale = "en"

    elif species_list_choice == "Scotland":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
        cfg.LATITUDE = -1
        cfg.LONGITUDE = -1
        cfg.SPECIES_LIST_FILE = None
        cfg.SPECIES_LIST = []
        locale = "en"

    elif species_list_choice == "UK":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
        cfg.LATITUDE = -1
        cfg.LONGITUDE = -1
        cfg.SPECIES_LIST_FILE = None
        cfg.SPECIES_LIST = []
        locale = "en"

    elif species_list_choice == "USA":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
        cfg.LATITUDE = -1
        cfg.LONGITUDE = -1
        cfg.SPECIES_LIST_FILE = None
        cfg.SPECIES_LIST = []
        locale = "en"

    else:
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
        cfg.LATITUDE = -1
        cfg.LONGITUDE = -1
        cfg.SPECIES_LIST_FILE = None
        cfg.SPECIES_LIST = []
        locale = "en"

    # Load translated labels
    lfile = os.path.join(cfg.TRANSLATED_BAT_LABELS_PATH,
                         os.path.basename(cfg.LABELS_FILE).replace(".txt", f"_{locale}.txt"))
    if not locale in ["en"] and os.path.isfile(lfile):
        cfg.TRANSLATED_LABELS = utils.readLines(lfile)
    else:
        cfg.TRANSLATED_LABELS = cfg.LABELS

    if len(cfg.SPECIES_LIST) == 0:
        print(f"Species list contains {len(cfg.LABELS)} species")
    else:
        print(f"Species list contains {len(cfg.SPECIES_LIST)} species")

    cfg.INPUT_PATH = input_path

    if input_dir:
        cfg.OUTPUT_PATH = output_path if output_path else input_dir
    else:
        cfg.OUTPUT_PATH = output_path if output_path else input_path.split(".", 1)[0] + ".csv"

    # Parse input files
    if input_dir:
        cfg.FILE_LIST = utils.collect_audio_files(input_dir)
        cfg.INPUT_PATH = input_dir
    elif os.path.isdir(cfg.INPUT_PATH):
        cfg.FILE_LIST = utils.collect_audio_files(cfg.INPUT_PATH)
    else:
        cfg.FILE_LIST = [cfg.INPUT_PATH]

    validate(cfg.FILE_LIST, "No audio files found.")
    cfg.MIN_CONFIDENCE = confidence
    cfg.SIGMOID_SENSITIVITY = sensitivity
    cfg.SIG_OVERLAP = overlap

    # Set result type
    cfg.RESULT_TYPE = OUTPUT_TYPE_MAP[output_type] if output_type in OUTPUT_TYPE_MAP else output_type.lower()

    if not cfg.RESULT_TYPE in ["table", "audacity", "r", "csv"]:
        cfg.RESULT_TYPE = "table"
    # Set number of threads
    if input_dir:
        cfg.CPU_THREADS = max(1, int(threads))
        cfg.TFLITE_THREADS = 1
    else:
        cfg.CPU_THREADS = 1
        cfg.TFLITE_THREADS = max(1, int(threads))
    # Set batch size
    cfg.BATCH_SIZE = max(1, int(batch_size))
    flist = []

    for f in cfg.FILE_LIST:
        flist.append((f, cfg.get_config()))

    result_list = []

    if progress is not None:
        progress(0, desc="Starting ...")
    # Analyze files
    if cfg.CPU_THREADS < 2:
        for entry in flist:
            result = analyzeFile_wrapper(entry)
            result_list.append(result)
    else:
        executor = None
        with concurrent.futures.ProcessPoolExecutor(max_workers=cfg.CPU_THREADS) as executor:
            futures = (executor.submit(analyzeFile_wrapper, arg) for arg in flist)

            for i, f in enumerate(concurrent.futures.as_completed(futures), start=1):
                if progress is not None:
                    progress((i, len(flist)), total=len(flist), unit="files")
                result = f.result()
                result_list.append(result)
    return [[os.path.relpath(r[0], input_dir), r[1]] for r in result_list] if input_dir else cfg.OUTPUT_PATH

def extractSegments_wrapper(entry):
    return (entry[0][0], segments.extractSegments(entry))
def extract_segments(audio_dir, result_dir, output_dir, min_conf, num_seq, seq_length, threads, progress=gr.Progress()):
    validate(audio_dir, "No audio directory selected")

    if not result_dir:
        result_dir = audio_dir

    if not output_dir:
        output_dir = audio_dir

    if progress is not None:
        progress(0, desc="Searching files ...")


    # Parse audio and result folders
    cfg.FILE_LIST = segments.parseFolders(audio_dir, result_dir)

    # Set output folder
    cfg.OUTPUT_PATH = output_dir

    # Set number of threads
    cfg.CPU_THREADS = int(threads)

    # Set confidence threshold
    cfg.MIN_CONFIDENCE = max(0.01, min(0.99, min_conf))

    # Parse file list and make list of segments
    cfg.FILE_LIST = segments.parseFiles(cfg.FILE_LIST, max(1, int(num_seq)))

    # Add config items to each file list entry.
    # We have to do this for Windows which does not
    # support fork() and thus each process has to
    # have its own config. USE LINUX!
    flist = [(entry, max(cfg.SIG_LENGTH, float(seq_length)), cfg.get_config()) for entry in cfg.FILE_LIST]

    result_list = []

    # Extract segments
    if cfg.CPU_THREADS < 2:
        for i, entry in enumerate(flist):
            result = extractSegments_wrapper(entry)
            result_list.append(result)

            if progress is not None:
                progress((i, len(flist)), total=len(flist), unit="files")
    else:
        with concurrent.futures.ProcessPoolExecutor(max_workers=cfg.CPU_THREADS) as executor:
            futures = (executor.submit(extractSegments_wrapper, arg) for arg in flist)
            for i, f in enumerate(concurrent.futures.as_completed(futures), start=1):
                if progress is not None:
                    progress((i, len(flist)), total=len(flist), unit="files")
                result = f.result()

                result_list.append(result)

    return [[os.path.relpath(r[0], audio_dir), r[1]] for r in result_list]


def select_file(filetypes=()):
    """Creates a file selection dialog.
    Args:
        filetypes: List of filetypes to be filtered in the dialog.
    Returns:
        The selected file or None of the dialog was canceled.
    """
    files = _WINDOW.create_file_dialog(webview.OPEN_DIALOG, file_types=filetypes)
    return files[0] if files else None

def format_seconds(secs: float):
    """Formats a number of seconds into a string.

    Formats the seconds into the format "h:mm:ss.ms"

    Args:
        secs: Number of seconds.

    Returns:
        A string with the formatted seconds.
    """
    hours, secs = divmod(secs, 3600)
    minutes, secs = divmod(secs, 60)

    return "{:2.0f}:{:02.0f}:{:06.3f}".format(hours, minutes, secs)

def select_directory(collect_files=True):
    """Shows a directory selection system dialog.

    Uses the pywebview to create a system dialog.

    Args:
        collect_files: If True, also lists a files inside the directory.

    Returns:
        If collect_files==True, returns (directory path, list of (relative file path, audio length))
        else just the directory path.
        All values will be None of the dialog is cancelled.
    """
    dir_name = _WINDOW.create_file_dialog(webview.FOLDER_DIALOG)

    if collect_files:
        if not dir_name:
            return None, None

        files = utils.collect_audio_files(dir_name[0])

        return dir_name[0], [
            [os.path.relpath(file, dir_name[0]), format_seconds(librosa.get_duration(filename=file))] for file in files
        ]

    return dir_name[0] if dir_name else None


def show_species_choice(choice: str):
    """Sets the visibility of the species list choices.
    Args:
        choice: The label of the currently active choice.
    Returns:
        A list of [
            Row update,
            File update,
            Column update,
            Column update,
        ]
    """
    return [
        gr.Row.update(visible=True),
        gr.File.update(visible=False),
        gr.Column.update(visible=False),
        gr.Column.update(visible=False),
    ]






#
# VIEW - This is where the UI elements are defined
#

def sample_sliders(opened=True):
    """Creates the gradio accordion for the inference settings.
    Args:
        opened: If True the accordion is open on init.
    Returns:
        A tuple with the created elements:
        (Slider (min confidence), Slider (sensitivity), Slider (overlap))
    """
    with gr.Accordion("Inference settings", open=opened):
        with gr.Row():
            confidence_slider = gr.Slider(
                minimum=0, maximum=1, value=0.5, step=0.01, label="Minimum Confidence", info="Minimum confidence threshold."
            )
            sensitivity_slider = gr.Slider(
                minimum=0.5,
                maximum=1.5,
                value=1,
                step=0.01,
                label="Sensitivity",
                info="Detection sensitivity; Higher values result in higher sensitivity.",
            )
            overlap_slider = gr.Slider(
                minimum=0, maximum=2.99, value=0, step=0.01, label="Overlap", info="Overlap of prediction segments."
            )

    return confidence_slider, sensitivity_slider, overlap_slider

def locale():
    """Creates the gradio elements for locale selection
    Reads the translated labels inside the checkpoints directory.
    Returns:
        The dropdown element.
    """
    label_files = os.listdir(os.path.join(os.path.dirname(sys.argv[0]), ORIGINAL_TRANSLATED_LABELS_PATH))
    options = ["EN"] + [label_file.rsplit("_", 1)[-1].split(".")[0].upper() for label_file in label_files]

    return gr.Dropdown(options, value="EN", label="Locale", info="Locale for the translated species common names.",visible=False)

def species_lists(opened=True):
    """Creates the gradio accordion for species selection.
    Args:
        opened: If True the accordion is open on init.
    Returns:
        A tuple with the created elements:
        (Radio (choice), File (custom species list), Slider (lat), Slider (lon), Slider (week), Slider (threshold), Checkbox (yearlong?), State (custom classifier))
    """
    with gr.Accordion("Area selection", open=opened):
        with gr.Row():
            species_list_radio = gr.Radio(
                [_AREA_ONE, _AREA_TWO, _AREA_THREE, _AREA_FOUR, _AREA_FIFE],
                value="All regions",
                label="Regions list",
                info="List of all possible regions",
                elem_classes="d-block",
            )
            # species_list_radio.change(
            #     show_species_choice,
            #     inputs=[species_list_radio],
            #     outputs=[ ],
            #     show_progress=False,
            # )
            #
    return species_list_radio

#
# Design main frame for analysis of a single file
#
def build_single_analysis_tab():
    with gr.Tab("Single file"):
        audio_input = gr.Audio(type="filepath", label="file", elem_id="single_file_audio")
        confidence_slider, sensitivity_slider, overlap_slider = sample_sliders(False)
        species_list_radio = species_lists(False)
        locale_radio = locale()

        inputs = [
            audio_input,
            confidence_slider,
            sensitivity_slider,
            overlap_slider,
            species_list_radio,
            locale_radio
        ]

        output_dataframe = gr.Dataframe(
            type="pandas",
            headers=["Start (s)", "End (s)", "Scientific name", "Common name", "Confidence"],
            elem_classes="mh-200",
        )
        single_file_analyze = gr.Button("Analyze")
        single_file_analyze.click(runSingleFileAnalysis,
                                  inputs=inputs,
                                  outputs=output_dataframe,
                                  )


def build_multi_analysis_tab():
    with gr.Tab("Multiple files"):
        input_directory_state = gr.State()
        output_directory_predict_state = gr.State()
        with gr.Row():
            with gr.Column():
                select_directory_btn = gr.Button("Select directory (recursive)")
                directory_input = gr.Matrix(interactive=False, elem_classes="mh-200", headers=["Subpath", "Length"])

                def select_directory_on_empty():
                    res = select_directory()

                    return res if res[1] else [res[0], [["No files found"]]]

                select_directory_btn.click(
                    select_directory_on_empty, outputs=[input_directory_state, directory_input], show_progress=True
                )

            with gr.Column():
                select_out_directory_btn = gr.Button("Select output directory.")
                selected_out_textbox = gr.Textbox(
                    label="Output directory",
                    interactive=False,
                    placeholder="If not selected, the input directory will be used.",
                )

                def select_directory_wrapper():
                    return (select_directory(collect_files=False),) * 2

                select_out_directory_btn.click(
                    select_directory_wrapper,
                    outputs=[output_directory_predict_state, selected_out_textbox],
                    show_progress=False,
                )

        confidence_slider, sensitivity_slider, overlap_slider = sample_sliders()
        species_list_radio = species_lists(False)

        output_type_radio = gr.Radio(
            list(OUTPUT_TYPE_MAP.keys()),
            value="Raven selection table",
            label="Result type",
            info="Specifies output format.",
        )

        with gr.Row():
            batch_size_number = gr.Number(
                precision=1, label="Batch size", value=1, info="Number of samples to process at the same time."
            )
            threads_number = gr.Number(precision=1, label="Threads", value=4, info="Number of CPU threads.")

        locale_radio = locale()

        start_batch_analysis_btn = gr.Button("Analyze")

        result_grid = gr.Matrix(headers=["File", "Execution"], elem_classes="mh-200")

        inputs = [
            output_directory_predict_state,
            confidence_slider,
            sensitivity_slider,
            overlap_slider,
            species_list_radio,
            locale_radio,
            batch_size_number,
            threads_number,
            input_directory_state,
            output_type_radio
        ]

        start_batch_analysis_btn.click(runBatchAnalysis, inputs=inputs, outputs=result_grid)

def build_segments_tab():
    with gr.Tab("Segments"):
        audio_directory_state = gr.State()
        result_directory_state = gr.State()
        output_directory_state = gr.State()

        def select_directory_to_state_and_tb():
            return (select_directory(collect_files=False),) * 2

        with gr.Row():
            select_audio_directory_btn = gr.Button("Select audio directory (recursive)")
            selected_audio_directory_tb = gr.Textbox(show_label=False, interactive=False)
            select_audio_directory_btn.click(
                select_directory_to_state_and_tb,
                outputs=[selected_audio_directory_tb, audio_directory_state],
                show_progress=False,
            )

        with gr.Row():
            select_result_directory_btn = gr.Button("Select result directory")
            selected_result_directory_tb = gr.Textbox(
                show_label=False, interactive=False, placeholder="Same as audio directory if not selected"
            )
            select_result_directory_btn.click(
                select_directory_to_state_and_tb,
                outputs=[result_directory_state, selected_result_directory_tb],
                show_progress=False,
            )

        with gr.Row():
            select_output_directory_btn = gr.Button("Select output directory")
            selected_output_directory_tb = gr.Textbox(
                show_label=False, interactive=False, placeholder="Same as audio directory if not selected"
            )
            select_output_directory_btn.click(
                select_directory_to_state_and_tb,
                outputs=[selected_output_directory_tb, output_directory_state],
                show_progress=False,
            )

        min_conf_slider = gr.Slider(
            minimum=0.1, maximum=0.99, step=0.01, label="Minimum confidence", info="Minimum confidence threshold."
        )
        num_seq_number = gr.Number(
            100, label="Max number of segments", info="Maximum number of randomly extracted segments per species."
        )
        seq_length_number = gr.Number(3.0, label="Sequence length", info="Length of extracted segments in seconds.")
        threads_number = gr.Number(4, label="Threads", info="Number of CPU threads.")

        extract_segments_btn = gr.Button("Extract segments")

        result_grid = gr.Matrix(headers=["File", "Execution"], elem_classes="mh-200")

        extract_segments_btn.click(
            extract_segments,
            inputs=[
                audio_directory_state,
                result_directory_state,
                output_directory_state,
                min_conf_slider,
                num_seq_number,
                seq_length_number,
                threads_number,
            ],
            outputs=result_grid,
        )

if __name__ == "__main__":
    freeze_support()
    with gr.Blocks(
        css=r".d-block .wrap {display: block !important;} .mh-200 {max-height: 300px; overflow-y: auto !important;} footer {display: none !important;} #single_file_audio, #single_file_audio * {max-height: 81.6px; min-height: 0;}",
        theme=gr.themes.Default(),
        analytics_enabled=False,
    ) as demo:
        build_single_analysis_tab()
        # build_multi_analysis_tab()
        # build_segments_tab()
        demo.launch()

    #url = demo.queue(api_open=False).launch(prevent_thread_lock=True, quiet=True)[1]
    #_WINDOW = webview.create_window("BattyBirdNET-Analyzer", url.rstrip("/") +
    #                                "?__theme=light", min_size=(1024, 768))
    # webview.start(private_mode=False)