Spaces:
Runtime error
Runtime error
File size: 23,730 Bytes
b87f798 17842a5 53fc875 b87f798 53fc875 b87f798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
import concurrent.futures
import os
import sys
from multiprocessing import freeze_support
import gradio as gr
import webview
import bat_ident
import config as cfg
import segments
import utils
import logging
import librosa
logging.basicConfig(filename='bat_gui.log', encoding='utf-8', level=logging.DEBUG)
_WINDOW: webview.Window
_AREA_ONE = "EU"
_AREA_TWO = "Bavaria"
_AREA_THREE = "USA"
_AREA_FOUR = "Scotland"
_AREA_FIFE = "UK"
#
# MODEL part mixed with CONTROLER
#
OUTPUT_TYPE_MAP = {"Raven selection table": "table", "Audacity": "audacity", "R": "r", "CSV": "csv"}
ORIGINAL_MODEL_PATH = cfg.MODEL_PATH
ORIGINAL_MDATA_MODEL_PATH = cfg.MDATA_MODEL_PATH
ORIGINAL_LABELS_FILE = cfg.LABELS_FILE
ORIGINAL_TRANSLATED_LABELS_PATH = cfg.TRANSLATED_BAT_LABELS_PATH # cfg.TRANSLATED_LABELS_PATH
def analyzeFile_wrapper(entry):
#return (entry[0], analyze.analyzeFile(entry))
return (entry[0], bat_ident.analyze_file(entry))
def validate(value, msg):
"""Checks if the value ist not falsy.
If the value is falsy, an error will be raised.
Args:
value: Value to be tested.
msg: Message in case of an error.
"""
if not value:
raise gr.Error(msg)
def runBatchAnalysis(
output_path,
confidence,
sensitivity,
overlap,
species_list_choice,
locale,
batch_size,
threads,
input_dir,
output_type_radio,
progress=gr.Progress(),
):
validate(input_dir, "Please select a directory.")
batch_size = int(batch_size)
threads = int(threads)
return runAnalysis(
species_list_choice,
None,
output_path,
confidence,
sensitivity,
overlap,
output_type_radio,
"en" if not locale else locale,
batch_size,
threads,
input_dir,
progress,
)
def runSingleFileAnalysis(input_path,
confidence,
sensitivity,
overlap,
species_list_choice,
locale):
validate(input_path, "Please select a file.")
logging.info('first level')
return runAnalysis(
species_list_choice,
input_path,
None,
confidence,
sensitivity,
overlap,
"csv",
"en" if not locale else locale,
1,
4,
None,
progress=None,
)
def runAnalysis(
species_list_choice: str,
input_path: str,
output_path: str | None,
confidence: float,
sensitivity: float,
overlap: float,
output_type: str,
locale: str,
batch_size: int,
threads: int,
input_dir: str,
progress: gr.Progress | None,
):
"""Starts the analysis.
Args:
input_path: Either a file or directory.
output_path: The output path for the result, if None the input_path is used
confidence: The selected minimum confidence.
sensitivity: The selected sensitivity.
overlap: The selected segment overlap.
species_list_choice: The choice for the species list.
species_list_file: The selected custom species list file.
lat: The selected latitude.
lon: The selected longitude.
week: The selected week of the year.
use_yearlong: Use yearlong instead of week.
sf_thresh: The threshold for the predicted species list.
custom_classifier_file: Custom classifier to be used.
output_type: The type of result to be generated.
locale: The translation to be used.
batch_size: The number of samples in a batch.
threads: The number of threads to be used.
input_dir: The input directory.
progress: The gradio progress bar.
"""
logging.info('second level')
if progress is not None:
progress(0, desc="Preparing ...")
# locale = locale.lower()
# Load eBird codes, labels
#cfg.CODES = analyze.loadCodes()
# cfg.LABELS = utils.readLines(ORIGINAL_LABELS_FILE)
cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK = -1, -1, -1
cfg.LOCATION_FILTER_THRESHOLD = 0.03
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
cfg.BAT_CLASSIFIER_LOCATION = os.path.join(script_dir, cfg.BAT_CLASSIFIER_LOCATION)
if species_list_choice == "Bavaria":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "de"
elif species_list_choice == "EU":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "en"
elif species_list_choice == "Scotland":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "en"
elif species_list_choice == "UK":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "en"
elif species_list_choice == "USA":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "en"
else:
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "en"
# Load translated labels
lfile = os.path.join(cfg.TRANSLATED_BAT_LABELS_PATH,
os.path.basename(cfg.LABELS_FILE).replace(".txt", f"_{locale}.txt"))
if not locale in ["en"] and os.path.isfile(lfile):
cfg.TRANSLATED_LABELS = utils.readLines(lfile)
else:
cfg.TRANSLATED_LABELS = cfg.LABELS
if len(cfg.SPECIES_LIST) == 0:
print(f"Species list contains {len(cfg.LABELS)} species")
else:
print(f"Species list contains {len(cfg.SPECIES_LIST)} species")
cfg.INPUT_PATH = input_path
if input_dir:
cfg.OUTPUT_PATH = output_path if output_path else input_dir
else:
cfg.OUTPUT_PATH = output_path if output_path else input_path.split(".", 1)[0] + ".csv"
# Parse input files
if input_dir:
cfg.FILE_LIST = utils.collect_audio_files(input_dir)
cfg.INPUT_PATH = input_dir
elif os.path.isdir(cfg.INPUT_PATH):
cfg.FILE_LIST = utils.collect_audio_files(cfg.INPUT_PATH)
else:
cfg.FILE_LIST = [cfg.INPUT_PATH]
validate(cfg.FILE_LIST, "No audio files found.")
cfg.MIN_CONFIDENCE = confidence
cfg.SIGMOID_SENSITIVITY = sensitivity
cfg.SIG_OVERLAP = overlap
# Set result type
cfg.RESULT_TYPE = OUTPUT_TYPE_MAP[output_type] if output_type in OUTPUT_TYPE_MAP else output_type.lower()
if not cfg.RESULT_TYPE in ["table", "audacity", "r", "csv"]:
cfg.RESULT_TYPE = "table"
# Set number of threads
if input_dir:
cfg.CPU_THREADS = max(1, int(threads))
cfg.TFLITE_THREADS = 1
else:
cfg.CPU_THREADS = 1
cfg.TFLITE_THREADS = max(1, int(threads))
# Set batch size
cfg.BATCH_SIZE = max(1, int(batch_size))
flist = []
for f in cfg.FILE_LIST:
flist.append((f, cfg.get_config()))
result_list = []
if progress is not None:
progress(0, desc="Starting ...")
# Analyze files
if cfg.CPU_THREADS < 2:
for entry in flist:
result = analyzeFile_wrapper(entry)
result_list.append(result)
else:
executor = None
with concurrent.futures.ProcessPoolExecutor(max_workers=cfg.CPU_THREADS) as executor:
futures = (executor.submit(analyzeFile_wrapper, arg) for arg in flist)
for i, f in enumerate(concurrent.futures.as_completed(futures), start=1):
if progress is not None:
progress((i, len(flist)), total=len(flist), unit="files")
result = f.result()
result_list.append(result)
return [[os.path.relpath(r[0], input_dir), r[1]] for r in result_list] if input_dir else cfg.OUTPUT_PATH
def extractSegments_wrapper(entry):
return (entry[0][0], segments.extractSegments(entry))
def extract_segments(audio_dir, result_dir, output_dir, min_conf, num_seq, seq_length, threads, progress=gr.Progress()):
validate(audio_dir, "No audio directory selected")
if not result_dir:
result_dir = audio_dir
if not output_dir:
output_dir = audio_dir
if progress is not None:
progress(0, desc="Searching files ...")
# Parse audio and result folders
cfg.FILE_LIST = segments.parseFolders(audio_dir, result_dir)
# Set output folder
cfg.OUTPUT_PATH = output_dir
# Set number of threads
cfg.CPU_THREADS = int(threads)
# Set confidence threshold
cfg.MIN_CONFIDENCE = max(0.01, min(0.99, min_conf))
# Parse file list and make list of segments
cfg.FILE_LIST = segments.parseFiles(cfg.FILE_LIST, max(1, int(num_seq)))
# Add config items to each file list entry.
# We have to do this for Windows which does not
# support fork() and thus each process has to
# have its own config. USE LINUX!
flist = [(entry, max(cfg.SIG_LENGTH, float(seq_length)), cfg.get_config()) for entry in cfg.FILE_LIST]
result_list = []
# Extract segments
if cfg.CPU_THREADS < 2:
for i, entry in enumerate(flist):
result = extractSegments_wrapper(entry)
result_list.append(result)
if progress is not None:
progress((i, len(flist)), total=len(flist), unit="files")
else:
with concurrent.futures.ProcessPoolExecutor(max_workers=cfg.CPU_THREADS) as executor:
futures = (executor.submit(extractSegments_wrapper, arg) for arg in flist)
for i, f in enumerate(concurrent.futures.as_completed(futures), start=1):
if progress is not None:
progress((i, len(flist)), total=len(flist), unit="files")
result = f.result()
result_list.append(result)
return [[os.path.relpath(r[0], audio_dir), r[1]] for r in result_list]
def select_file(filetypes=()):
"""Creates a file selection dialog.
Args:
filetypes: List of filetypes to be filtered in the dialog.
Returns:
The selected file or None of the dialog was canceled.
"""
files = _WINDOW.create_file_dialog(webview.OPEN_DIALOG, file_types=filetypes)
return files[0] if files else None
def format_seconds(secs: float):
"""Formats a number of seconds into a string.
Formats the seconds into the format "h:mm:ss.ms"
Args:
secs: Number of seconds.
Returns:
A string with the formatted seconds.
"""
hours, secs = divmod(secs, 3600)
minutes, secs = divmod(secs, 60)
return "{:2.0f}:{:02.0f}:{:06.3f}".format(hours, minutes, secs)
def select_directory(collect_files=True):
"""Shows a directory selection system dialog.
Uses the pywebview to create a system dialog.
Args:
collect_files: If True, also lists a files inside the directory.
Returns:
If collect_files==True, returns (directory path, list of (relative file path, audio length))
else just the directory path.
All values will be None of the dialog is cancelled.
"""
dir_name = _WINDOW.create_file_dialog(webview.FOLDER_DIALOG)
if collect_files:
if not dir_name:
return None, None
files = utils.collect_audio_files(dir_name[0])
return dir_name[0], [
[os.path.relpath(file, dir_name[0]), format_seconds(librosa.get_duration(filename=file))] for file in files
]
return dir_name[0] if dir_name else None
def show_species_choice(choice: str):
"""Sets the visibility of the species list choices.
Args:
choice: The label of the currently active choice.
Returns:
A list of [
Row update,
File update,
Column update,
Column update,
]
"""
return [
gr.Row.update(visible=True),
gr.File.update(visible=False),
gr.Column.update(visible=False),
gr.Column.update(visible=False),
]
#
# VIEW - This is where the UI elements are defined
#
def sample_sliders(opened=True):
"""Creates the gradio accordion for the inference settings.
Args:
opened: If True the accordion is open on init.
Returns:
A tuple with the created elements:
(Slider (min confidence), Slider (sensitivity), Slider (overlap))
"""
with gr.Accordion("Inference settings", open=opened):
with gr.Row():
confidence_slider = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.01, label="Minimum Confidence", info="Minimum confidence threshold."
)
sensitivity_slider = gr.Slider(
minimum=0.5,
maximum=1.5,
value=1,
step=0.01,
label="Sensitivity",
info="Detection sensitivity; Higher values result in higher sensitivity.",
)
overlap_slider = gr.Slider(
minimum=0, maximum=2.99, value=0, step=0.01, label="Overlap", info="Overlap of prediction segments."
)
return confidence_slider, sensitivity_slider, overlap_slider
def locale():
"""Creates the gradio elements for locale selection
Reads the translated labels inside the checkpoints directory.
Returns:
The dropdown element.
"""
label_files = os.listdir(os.path.join(os.path.dirname(sys.argv[0]), ORIGINAL_TRANSLATED_LABELS_PATH))
options = ["EN"] + [label_file.rsplit("_", 1)[-1].split(".")[0].upper() for label_file in label_files]
return gr.Dropdown(options, value="EN", label="Locale", info="Locale for the translated species common names.",visible=False)
def species_lists(opened=True):
"""Creates the gradio accordion for species selection.
Args:
opened: If True the accordion is open on init.
Returns:
A tuple with the created elements:
(Radio (choice), File (custom species list), Slider (lat), Slider (lon), Slider (week), Slider (threshold), Checkbox (yearlong?), State (custom classifier))
"""
with gr.Accordion("Area selection", open=opened):
with gr.Row():
species_list_radio = gr.Radio(
[_AREA_ONE, _AREA_TWO, _AREA_THREE, _AREA_FOUR, _AREA_FIFE],
value="All regions",
label="Regions list",
info="List of all possible regions",
elem_classes="d-block",
)
# species_list_radio.change(
# show_species_choice,
# inputs=[species_list_radio],
# outputs=[ ],
# show_progress=False,
# )
#
return species_list_radio
#
# Design main frame for analysis of a single file
#
def build_single_analysis_tab():
with gr.Tab("Single file"):
audio_input = gr.Audio(type="filepath", label="file", elem_id="single_file_audio")
confidence_slider, sensitivity_slider, overlap_slider = sample_sliders(False)
species_list_radio = species_lists(False)
locale_radio = locale()
inputs = [
audio_input,
confidence_slider,
sensitivity_slider,
overlap_slider,
species_list_radio,
locale_radio
]
output_dataframe = gr.Dataframe(
type="pandas",
headers=["Start (s)", "End (s)", "Scientific name", "Common name", "Confidence"],
elem_classes="mh-200",
)
single_file_analyze = gr.Button("Analyze")
single_file_analyze.click(runSingleFileAnalysis,
inputs=inputs,
outputs=output_dataframe,
)
def build_multi_analysis_tab():
with gr.Tab("Multiple files"):
input_directory_state = gr.State()
output_directory_predict_state = gr.State()
with gr.Row():
with gr.Column():
select_directory_btn = gr.Button("Select directory (recursive)")
directory_input = gr.Matrix(interactive=False, elem_classes="mh-200", headers=["Subpath", "Length"])
def select_directory_on_empty():
res = select_directory()
return res if res[1] else [res[0], [["No files found"]]]
select_directory_btn.click(
select_directory_on_empty, outputs=[input_directory_state, directory_input], show_progress=True
)
with gr.Column():
select_out_directory_btn = gr.Button("Select output directory.")
selected_out_textbox = gr.Textbox(
label="Output directory",
interactive=False,
placeholder="If not selected, the input directory will be used.",
)
def select_directory_wrapper():
return (select_directory(collect_files=False),) * 2
select_out_directory_btn.click(
select_directory_wrapper,
outputs=[output_directory_predict_state, selected_out_textbox],
show_progress=False,
)
confidence_slider, sensitivity_slider, overlap_slider = sample_sliders()
species_list_radio = species_lists(False)
output_type_radio = gr.Radio(
list(OUTPUT_TYPE_MAP.keys()),
value="Raven selection table",
label="Result type",
info="Specifies output format.",
)
with gr.Row():
batch_size_number = gr.Number(
precision=1, label="Batch size", value=1, info="Number of samples to process at the same time."
)
threads_number = gr.Number(precision=1, label="Threads", value=4, info="Number of CPU threads.")
locale_radio = locale()
start_batch_analysis_btn = gr.Button("Analyze")
result_grid = gr.Matrix(headers=["File", "Execution"], elem_classes="mh-200")
inputs = [
output_directory_predict_state,
confidence_slider,
sensitivity_slider,
overlap_slider,
species_list_radio,
locale_radio,
batch_size_number,
threads_number,
input_directory_state,
output_type_radio
]
start_batch_analysis_btn.click(runBatchAnalysis, inputs=inputs, outputs=result_grid)
def build_segments_tab():
with gr.Tab("Segments"):
audio_directory_state = gr.State()
result_directory_state = gr.State()
output_directory_state = gr.State()
def select_directory_to_state_and_tb():
return (select_directory(collect_files=False),) * 2
with gr.Row():
select_audio_directory_btn = gr.Button("Select audio directory (recursive)")
selected_audio_directory_tb = gr.Textbox(show_label=False, interactive=False)
select_audio_directory_btn.click(
select_directory_to_state_and_tb,
outputs=[selected_audio_directory_tb, audio_directory_state],
show_progress=False,
)
with gr.Row():
select_result_directory_btn = gr.Button("Select result directory")
selected_result_directory_tb = gr.Textbox(
show_label=False, interactive=False, placeholder="Same as audio directory if not selected"
)
select_result_directory_btn.click(
select_directory_to_state_and_tb,
outputs=[result_directory_state, selected_result_directory_tb],
show_progress=False,
)
with gr.Row():
select_output_directory_btn = gr.Button("Select output directory")
selected_output_directory_tb = gr.Textbox(
show_label=False, interactive=False, placeholder="Same as audio directory if not selected"
)
select_output_directory_btn.click(
select_directory_to_state_and_tb,
outputs=[selected_output_directory_tb, output_directory_state],
show_progress=False,
)
min_conf_slider = gr.Slider(
minimum=0.1, maximum=0.99, step=0.01, label="Minimum confidence", info="Minimum confidence threshold."
)
num_seq_number = gr.Number(
100, label="Max number of segments", info="Maximum number of randomly extracted segments per species."
)
seq_length_number = gr.Number(3.0, label="Sequence length", info="Length of extracted segments in seconds.")
threads_number = gr.Number(4, label="Threads", info="Number of CPU threads.")
extract_segments_btn = gr.Button("Extract segments")
result_grid = gr.Matrix(headers=["File", "Execution"], elem_classes="mh-200")
extract_segments_btn.click(
extract_segments,
inputs=[
audio_directory_state,
result_directory_state,
output_directory_state,
min_conf_slider,
num_seq_number,
seq_length_number,
threads_number,
],
outputs=result_grid,
)
if __name__ == "__main__":
freeze_support()
with gr.Blocks(
css=r".d-block .wrap {display: block !important;} .mh-200 {max-height: 300px; overflow-y: auto !important;} footer {display: none !important;} #single_file_audio, #single_file_audio * {max-height: 81.6px; min-height: 0;}",
theme=gr.themes.Default(),
analytics_enabled=False,
) as demo:
build_single_analysis_tab()
# build_multi_analysis_tab()
# build_segments_tab()
demo.launch()
#url = demo.queue(api_open=False).launch(prevent_thread_lock=True, quiet=True)[1]
#_WINDOW = webview.create_window("BattyBirdNET-Analyzer", url.rstrip("/") +
# "?__theme=light", min_size=(1024, 768))
# webview.start(private_mode=False)
|