File size: 23,992 Bytes
b87f798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70c40af
 
 
5b273b0
70c40af
 
b87f798
70c40af
 
 
5b273b0
70c40af
b87f798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b273b0
b87f798
5b273b0
b87f798
 
5b273b0
 
 
b87f798
5b273b0
b87f798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba2953f
b87f798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
"""Module to analyze audio samples.
"""
import argparse
import datetime
import json
import operator
import os
import sys
from multiprocessing import Pool, freeze_support
import numpy as np
import audio
import config as cfg
import model
import species
import utils
import subprocess
import pathlib


def load_codes():
    """Loads the eBird codes.
    Returns:
        A dictionary containing the eBird codes.
    """
    with open(cfg.CODES_FILE, "r") as cfile:
        codes = json.load(cfile)
    return codes

def save_result_file(r: dict[str, list], path: str, afile_path: str):
    """Saves the results to the hard drive.
    Args:
        r: The dictionary with {segment: scores}.
        path: The path where the result should be saved.
        afile_path: The path to audio file.
    """
    # Make folder if it doesn't exist
    if os.path.dirname(path):
        os.makedirs(os.path.dirname(path), exist_ok=True)

    # Selection table
    out_string = ""

    if cfg.RESULT_TYPE == "table":
        # Raven selection header
        header = "Selection\tView\tChannel\tBegin Time (s)\tEnd Time (s)\tSpecies Code\tCommon Name\tConfidence\n"
        selection_id = 0
        # Write header
        out_string += header

        # Extract valid predictions for every timestamp
        for timestamp in get_sorted_timestamps(r):
            rstring = ""
            start, end = timestamp.split("-", 1)

            for c in r[timestamp]:
                if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
                    selection_id += 1
                    label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
                    rstring += "{}\tSpectrogram 1\t1\t{}\t{}\t{}\t{}\t{:.4f}\n".format(
                        selection_id,
                        start,
                        end,
                        cfg.CODES[c[0]] if c[0] in cfg.CODES else c[0],
                        label.split("_", 1)[-1],
                        c[1],
                    )

            # Write result string to file
            out_string += rstring

    elif cfg.RESULT_TYPE == "audacity":
        # Audacity timeline labels
        for timestamp in get_sorted_timestamps(r):
            rstring = ""

            for c in r[timestamp]:
                if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
                    label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
                    rstring += "{}\t{}\t{:.4f}\n".format(timestamp.replace("-", "\t"), label.replace("_", ", "), c[1])

            # Write result string to file
            out_string += rstring

    elif cfg.RESULT_TYPE == "r":
        # Output format for R
        header = ("filepath,start,end,scientific_name,common_name,confidence,lat,lon,week,"
                  "overlap,sensitivity,min_conf,species_list,model")
        out_string += header

        for timestamp in get_sorted_timestamps(r):
            rstring = ""
            start, end = timestamp.split("-", 1)

            for c in r[timestamp]:
                if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
                    label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
                    rstring += "\n{},{},{},{},{},{:.4f},{:.4f},{:.4f},{},{},{},{},{},{}".format(
                        afile_path,
                        start,
                        end,
                        label.split("_", 1)[0],
                        label.split("_", 1)[-1],
                        c[1],
                        cfg.LATITUDE,
                        cfg.LONGITUDE,
                        cfg.WEEK,
                        cfg.SIG_OVERLAP,
                        (1.0 - cfg.SIGMOID_SENSITIVITY) + 1.0,
                        cfg.MIN_CONFIDENCE,
                        cfg.SPECIES_LIST_FILE,
                        os.path.basename(cfg.MODEL_PATH),
                    )

            # Write result string to file
            out_string += rstring

    elif cfg.RESULT_TYPE == "kaleidoscope":
        # Output format for kaleidoscope
        header = ("INDIR,FOLDER,IN FILE,OFFSET,DURATION,scientific_name,"
                  "common_name,confidence,lat,lon,week,overlap,sensitivity")
        out_string += header

        folder_path, filename = os.path.split(afile_path)
        parent_folder, folder_name = os.path.split(folder_path)

        for timestamp in get_sorted_timestamps(r):
            rstring = ""
            start, end = timestamp.split("-", 1)

            for c in r[timestamp]:
                if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
                    label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
                    rstring += "\n{},{},{},{},{},{},{},{:.4f},{:.4f},{:.4f},{},{},{}".format(
                        parent_folder.rstrip("/"),
                        folder_name,
                        filename,
                        start,
                        float(end) - float(start),
                        label.split("_", 1)[0],
                        label.split("_", 1)[-1],
                        c[1],
                        cfg.LATITUDE,
                        cfg.LONGITUDE,
                        cfg.WEEK,
                        cfg.SIG_OVERLAP,
                        (1.0 - cfg.SIGMOID_SENSITIVITY) + 1.0,
                    )

            # Write result string to file
            out_string += rstring

    else:
        # CSV output file
        header = "Start (s),End (s),Scientific name,Common name,Confidence\n"

        # Write header
        out_string += header

        for timestamp in get_sorted_timestamps(r):
            rstring = ""

            for c in r[timestamp]:
                start, end = timestamp.split("-", 1)

                if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
                    label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
                    rstring += "{},{},{},{},{:.4f}\n".format(start, end, label.split("_", 1)[0],
                                                             label.split("_", 1)[-1], c[1])

            # Write result string to file
            out_string += rstring

    # Save as file
    with open(path, "w", encoding="utf-8") as rfile:
        rfile.write(out_string)
    return out_string


def get_sorted_timestamps(results: dict[str, list]):
    """Sorts the results based on the segments.
    Args:
        results: The dictionary with {segment: scores}.
    Returns:
        Returns the sorted list of segments and their scores.
    """
    return sorted(results, key=lambda t: float(t.split("-", 1)[0]))


def get_raw_audio_from_file(fpath: str):
    """Reads an audio file.
    Reads the file and splits the signal into chunks.
    Args:
        fpath: Path to the audio file.
    Returns:
        The signal split into a list of chunks.
    """
    # Open file
    try:
        sig, rate = audio.openAudioFile(fpath, cfg.SAMPLE_RATE)
    except Exception as ex:
        print(f"Error: Cannot open audio file at load {fpath}", flush=True)
        utils.writeErrorLog(ex)
    chunks = None
    # Split into raw audio chunks
    try:
        chunks = audio.splitSignal(sig, cfg.SAMPLE_RATE, cfg.SIG_LENGTH, cfg.SIG_OVERLAP, cfg.SIG_MINLEN)
    except Exception as ex:
        print(f"Error: Cannot chunk audio file {fpath}", flush=True)
        utils.writeErrorLog(ex)
    return chunks


def predict(samples):
    """Predicts the classes for the given samples.

    Args:
        samples: Samples to be predicted.

    Returns:
        The prediction scores.
    """
    # Prepare sample and pass through model
    data = np.array(samples, dtype="float32")
    prediction = model.predict(data)

    # Logits or sigmoid activations?
    if cfg.APPLY_SIGMOID:
        prediction = model.flat_sigmoid(np.array(prediction), sensitivity=-cfg.SIGMOID_SENSITIVITY)

    return prediction


def analyze_file(item):
    """Analyzes a file.

    Predicts the scores for the file and saves the results.

    Args:
        item: Tuple containing (file path, config)

    Returns:
        The `True` if the file was analyzed successfully.
    """
    # Get file path and restore cfg
    fpath: str = item[0]
    cfg.set_config(item[1])

    # Start time
    start_time = datetime.datetime.now()

    # Status
    print(f"Analyzing {fpath}", flush=True)

   # try:
        # Open audio file and split into 3-second chunks
    chunks = get_raw_audio_from_file(fpath)

    # If no chunks, show error and skip
    #except Exception as ex:
    #    print(f"Error: Cannot open audio file {fpath}", flush=True)
    #    utils.writeErrorLog(ex)

    #    return False

    # Process each chunk
    try:
        start, end = 0, cfg.SIG_LENGTH
        results = {}
        samples = []
        timestamps = []

        for chunk_index, chunk in enumerate(chunks):
            # Add to batch
            samples.append(chunk)
            timestamps.append([start, end])

            # Advance start and end
            start += cfg.SIG_LENGTH - cfg.SIG_OVERLAP
            end = start + cfg.SIG_LENGTH

            # Check if batch is full or last chunk
            if len(samples) < cfg.BATCH_SIZE and chunk_index < len(chunks) - 1:
                continue

            # Predict
            prediction = predict(samples)

            # Add to results
            for i in range(len(samples)):
                # Get timestamp
                s_start, s_end = timestamps[i]

                # Get prediction
                pred = prediction[i]

                # Assign scores to labels
                p_labels = zip(cfg.LABELS, pred)

                # Sort by score
                p_sorted = sorted(p_labels, key=operator.itemgetter(1), reverse=True)

                # Store top 5 results and advance indices
                results[str(s_start) + "-" + str(s_end)] = p_sorted

            # Clear batch
            samples = []
            timestamps = []

    except Exception as ex:
        # Write error log
        print(f"Error: Cannot analyze audio file {fpath}.\n", flush=True)
        utils.writeErrorLog(ex)
        return False

    # Save as selection table
    try:
        # We have to check if output path is a file or directory
        if not cfg.OUTPUT_PATH.rsplit(".", 1)[-1].lower() in ["txt", "csv"]:
            rpath = fpath.replace(cfg.INPUT_PATH, "")
            rpath = rpath[1:] if rpath[0] in ["/", "\\"] else rpath

            # Make target directory if it doesn't exist
            rdir = os.path.join(cfg.OUTPUT_PATH, os.path.dirname(rpath))

            os.makedirs(rdir, exist_ok=True)

            if cfg.RESULT_TYPE == "table":
                rtype = "bat.selection.table.txt"
            elif cfg.RESULT_TYPE == "audacity":
                rtype = ".bat.results.txt"
            else:
                rtype = ".bat.results.csv"

            out_string = save_result_file(results, os.path.join(cfg.OUTPUT_PATH, rpath.rsplit(".", 1)[0] + rtype), fpath)
        else:
            out_string = save_result_file(results, cfg.OUTPUT_PATH, fpath)
            # Save as file
        with open(cfg.OUTPUT_PATH + "Results.csv", "a", encoding="utf-8") as rfile:
            postString = out_string.split("\n", 1)[1]
            # rfile.write(fpath.join(postString.splitlines(True)))
            rfile.write(postString)

    except Exception as ex:
        # Write error log
        print(f"Error: Cannot save result for {fpath}.\n", flush=True)
        utils.writeErrorLog(ex)
        return False

    delta_time = (datetime.datetime.now() - start_time).total_seconds()
    print("Finished {} in {:.2f} seconds".format(fpath, delta_time), flush=True)
    return True

def set_analysis_location():
    if args.area not in ["Bavaria", "Sweden", "EU", "Scotland", "UK", "USA","MarinCounty"]:
        exit(code="Unknown location option.")
    else:
        args.lat = -1
        args.lon = -1
        # args.locale = "en"

    if args.area == "Bavaria":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
        args.locale = "de"

    elif args.area == "EU":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)

    elif args.area == "Sweden":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Sweden-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Sweden-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
        args.locale = "se"

    elif args.area == "Scotland":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)

    elif args.area == "UK":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)

    elif args.area == "USA":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)

    elif args.area == "MarinCounty":
        cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-MarinCounty-144kHz.tflite"
        cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-MarinCounty-144kHz_Labels.txt"
        cfg.LABELS = utils.readLines(cfg.LABELS_FILE)

    else:
        cfg.CUSTOM_CLASSIFIER = None

def set_paths():
    # Set paths relative to script path (requested in #3)
    script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
    cfg.MODEL_PATH = os.path.join(script_dir, cfg.MODEL_PATH)
    cfg.LABELS_FILE = os.path.join(script_dir, cfg.LABELS_FILE)
    cfg.TRANSLATED_LABELS_PATH = os.path.join(script_dir, cfg.TRANSLATED_LABELS_PATH)
    cfg.MDATA_MODEL_PATH = os.path.join(script_dir, cfg.MDATA_MODEL_PATH)
    cfg.CODES_FILE = os.path.join(script_dir, cfg.CODES_FILE)
    cfg.ERROR_LOG_FILE = os.path.join(script_dir, cfg.ERROR_LOG_FILE)
    cfg.BAT_CLASSIFIER_LOCATION = os.path.join(script_dir, cfg.BAT_CLASSIFIER_LOCATION)
    cfg.INPUT_PATH = args.i
    cfg.OUTPUT_PATH = args.o

def set_custom_classifier():
    if args.classifier is None:
        return
    cfg.CUSTOM_CLASSIFIER = args.classifier  # we treat this as absolute path, so no need to join with dirname
    cfg.LABELS_FILE = args.classifier.replace(".tflite", "_Labels.txt")  # same for labels file
    cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
    args.lat = -1
    args.lon = -1
    # args.locale = "en"

def add_parser_arguments():
    parser.add_argument("--area",
                        default="EU",
                        help="Location. Values in ['Bavaria', 'EU', 'Sweden','Scotland', 'UK', 'USA', 'MarinCounty']. "
                             "Defaults to Bavaria.")

    parser.add_argument("--sensitivity",
                        type=float,
                        default=1.0,
                        help="Detection sensitivity; Higher values result in higher sensitivity. "
                             "Values in [0.5, 1.5]. Defaults to 1.0."
                        )
    parser.add_argument("--min_conf",
                        type=float,
                        default=0.7,
                        help="Minimum confidence threshold. Values in [0.01, 0.99]. Defaults to 0.1.")

    parser.add_argument("--overlap",
                        type=float,
                        default=0.0,
                        help="Overlap of prediction segments. Values in [0.0, 2.9]. Defaults to 0.0."
                        )
    parser.add_argument("--rtype",
                        default="csv",
                        help="Specifies output format. Values in ['table', 'audacity', 'r',  'kaleidoscope', 'csv']. "
                             "Defaults to 'csv' (Raven selection table)."
                        )
    parser.add_argument("--threads",
                        type=int,
                        default=4,
                        help="Number of CPU threads.")
    parser.add_argument("--batchsize",
                        type=int,
                        default=1,
                        help="Number of samples to process at the same time. Defaults to 1."
                        )
    parser.add_argument("--sf_thresh",
                        type=float,
                        default=0.03,
                        help="Minimum species occurrence frequency threshold for location filter. "
                             "Values in [0.01, 0.99]. Defaults to 0.03."
                        )
    parser.add_argument("--segment",
                        default="off",
                        help="Generate audio files containing the detected segments. "
                        )
    parser.add_argument("--spectrum",
                        default="off",
                        help="Generate mel spectrograms files containing the detected segments. "
                        )
    parser.add_argument("--i",
                        default=cfg.INPUT_PATH_SAMPLES,  # "put-your-files-here/",
                        help="Path to input file or folder. If this is a file, --o needs to be a file too.")
    parser.add_argument("--o",
                        default=cfg.OUTPUT_PATH_SAMPLES,
                        help="Path to output file or folder. If this is a file, --i needs to be a file too.")

    parser.add_argument("--classifier",
                        default=None,
                        help="Path to custom trained classifier. Defaults to None. "
                             "If set, --lat, --lon and --locale are ignored."
                        )
    parser.add_argument("--slist",
                        default="",
                        help='Path to species list file or folder. If folder is provided, species list needs to be '
                             'named "species_list.txt". If lat and lon are provided, this list will be ignored.'
                        )
    parser.add_argument("--lat",
                        type=float,
                        default=-1,
                        help="DISABLED. Set -1 to ignore.")
    parser.add_argument("--lon",
                        type=float,
                        default=-1,
                        help="DISABLED.  Set -1 to ignore.")
    parser.add_argument("--week",
                        type=int,
                        default=-1,
                        help="DISABLED. Set -1 for year-round species list."
                        )
    parser.add_argument("--locale",
                        default="en",
                        help="DISABLED. Defaults to 'en'."
                        )

def load_ebird_codes():
    cfg.CODES = load_codes()
    cfg.LABELS = utils.readLines(cfg.LABELS_FILE)

def load_species_list():
    cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK = args.lat, args.lon, args.week
    cfg.LOCATION_FILTER_THRESHOLD = max(0.01, min(0.99, float(args.sf_thresh)))
    script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))

    if cfg.LATITUDE == -1 and cfg.LONGITUDE == -1:
        if not args.slist:
            cfg.SPECIES_LIST_FILE = None
        else:
            cfg.SPECIES_LIST_FILE = os.path.join(script_dir, args.slist)

            if os.path.isdir(cfg.SPECIES_LIST_FILE):
                cfg.SPECIES_LIST_FILE = os.path.join(cfg.SPECIES_LIST_FILE, "species_list.txt")

        cfg.SPECIES_LIST = utils.readLines(cfg.SPECIES_LIST_FILE)
    else:
        cfg.SPECIES_LIST_FILE = None
        cfg.SPECIES_LIST = species.getSpeciesList(cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK, cfg.LOCATION_FILTER_THRESHOLD)
    if not cfg.SPECIES_LIST:
        print(f"Species list contains {len(cfg.LABELS)} species")
    else:
        print(f"Species list contains {len(cfg.SPECIES_LIST)} species")

def parse_input_files():
    if os.path.isdir(cfg.INPUT_PATH):
        cfg.FILE_LIST = utils.collect_audio_files(cfg.INPUT_PATH)
        print(f"Found {len(cfg.FILE_LIST)} files to analyze")
    else:
        cfg.FILE_LIST = [cfg.INPUT_PATH]

def set_analysis_parameters():
    cfg.MIN_CONFIDENCE = max(0.01, min(0.99, float(args.min_conf)))
    cfg.SIGMOID_SENSITIVITY = max(0.5, min(1.0 - (float(args.sensitivity) - 1.0), 1.5))
    cfg.SIG_OVERLAP = max(0.0, min(2.9, float(args.overlap)))
    cfg.BATCH_SIZE = max(1, int(args.batchsize))

def set_hardware_parameters():
    if os.path.isdir(cfg.INPUT_PATH):
        cfg.CPU_THREADS = max(1, int(args.threads))
        cfg.TFLITE_THREADS = 1
    else:
        cfg.CPU_THREADS = 1
        cfg.TFLITE_THREADS = max(1, int(args.threads))

def load_translated_labels():
    cfg.TRANSLATED_LABELS_PATH = cfg.TRANSLATED_BAT_LABELS_PATH
    lfile = os.path.join(cfg.TRANSLATED_LABELS_PATH,
                         os.path.basename(cfg.LABELS_FILE).replace(".txt", "_{}.txt".format(args.locale))
                         )
    if args.locale not in ["en"] and os.path.isfile(lfile):
        cfg.TRANSLATED_LABELS = utils.readLines(lfile)
    else:
        cfg.TRANSLATED_LABELS = cfg.LABELS

def check_result_type():
    cfg.RESULT_TYPE = args.rtype.lower()
    if cfg.RESULT_TYPE not in ["table", "audacity", "r", "kaleidoscope", "csv"]:
        cfg.RESULT_TYPE = "csv"
        print("Unknown output option. Using csv output.")

if __name__ == "__main__":
    freeze_support()  # Freeze support for executable
    parser = argparse.ArgumentParser(description="Analyze audio files with BattyBirdNET")
    add_parser_arguments()
    args = parser.parse_args()
    set_paths()
    load_ebird_codes()
    set_custom_classifier()
    check_result_type()
    set_analysis_location()
    load_translated_labels()
    load_species_list()
    parse_input_files()
    set_analysis_parameters()
    set_hardware_parameters()
    # Add config items to each file list entry.
    # We have to do this for Windows which does not
    # support fork() and thus each process has to
    # have its own config. USE LINUX!
    flist = [(f, cfg.get_config()) for f in cfg.FILE_LIST]

    # Analyze files
    if cfg.CPU_THREADS < 2:
        for entry in flist:
            analyze_file(entry)
    else:
        with Pool(cfg.CPU_THREADS) as p:
            p.map(analyze_file, flist)

    if args.segment == "on" or args.spectrum == "on":
        subprocess.run(["python3", "segments.py"])

        if args.spectrum == "on":
            # iterate through the segements folder subfolders, call the plotter
            print("Spectrums in progress ...")
            script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
            root_dir = pathlib.Path(os.path.join(script_dir, args.i + "/segments"))
            for dir_name in os.listdir(root_dir):
                f = os.path.join(root_dir, dir_name)
                if not os.path.isfile(f):
                    print("Spectrum in progres for: " + f)
                    cmd = ['python3', "batchspec.py", f, f]
                    subprocess.run(cmd)
    # A few examples to test
    # python3 analyze.py --i example/ --o example/ --slist example/ --min_conf 0.5 --threads 4
    # python3 analyze.py --i example/soundscape.wav --o example/soundscape.BirdNET.selection.table.txt --slist example/species_list.txt --threads 8
    # python3 analyze.py --i example/ --o example/ --lat 42.5 --lon -76.45 --week 4 --sensitivity 1.0 --rtype table --locale de