Dr. Richard Zinck
Two second analysis
e7bac24
raw
history blame
23.7 kB
"""Module to analyze audio samples.
"""
import argparse
import datetime
import json
import operator
import os
import sys
from multiprocessing import Pool, freeze_support
import numpy as np
import audio
import config as cfg
import model
import species
import utils
import subprocess
import pathlib
def load_codes():
"""Loads the eBird codes.
Returns:
A dictionary containing the eBird codes.
"""
with open(cfg.CODES_FILE, "r") as cfile:
codes = json.load(cfile)
return codes
def save_result_file(r: dict[str, list], path: str, afile_path: str):
"""Saves the results to the hard drive.
Args:
r: The dictionary with {segment: scores}.
path: The path where the result should be saved.
afile_path: The path to audio file.
"""
# Make folder if it doesn't exist
if os.path.dirname(path):
os.makedirs(os.path.dirname(path), exist_ok=True)
# Selection table
out_string = ""
if cfg.RESULT_TYPE == "table":
# Raven selection header
header = "Selection\tView\tChannel\tBegin Time (s)\tEnd Time (s)\tSpecies Code\tCommon Name\tConfidence\n"
selection_id = 0
# Write header
out_string += header
# Extract valid predictions for every timestamp
for timestamp in get_sorted_timestamps(r):
rstring = ""
start, end = timestamp.split("-", 1)
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
selection_id += 1
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += "{}\tSpectrogram 1\t1\t{}\t{}\t{}\t{}\t{:.4f}\n".format(
selection_id,
start,
end,
cfg.CODES[c[0]] if c[0] in cfg.CODES else c[0],
label.split("_", 1)[-1],
c[1],
)
# Write result string to file
out_string += rstring
elif cfg.RESULT_TYPE == "audacity":
# Audacity timeline labels
for timestamp in get_sorted_timestamps(r):
rstring = ""
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += "{}\t{}\t{:.4f}\n".format(timestamp.replace("-", "\t"), label.replace("_", ", "), c[1])
# Write result string to file
out_string += rstring
elif cfg.RESULT_TYPE == "r":
# Output format for R
header = ("filepath,start,end,scientific_name,common_name,confidence,lat,lon,week,"
"overlap,sensitivity,min_conf,species_list,model")
out_string += header
for timestamp in get_sorted_timestamps(r):
rstring = ""
start, end = timestamp.split("-", 1)
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += "\n{},{},{},{},{},{:.4f},{:.4f},{:.4f},{},{},{},{},{},{}".format(
afile_path,
start,
end,
label.split("_", 1)[0],
label.split("_", 1)[-1],
c[1],
cfg.LATITUDE,
cfg.LONGITUDE,
cfg.WEEK,
cfg.SIG_OVERLAP,
(1.0 - cfg.SIGMOID_SENSITIVITY) + 1.0,
cfg.MIN_CONFIDENCE,
cfg.SPECIES_LIST_FILE,
os.path.basename(cfg.MODEL_PATH),
)
# Write result string to file
out_string += rstring
elif cfg.RESULT_TYPE == "kaleidoscope":
# Output format for kaleidoscope
header = ("INDIR,FOLDER,IN FILE,OFFSET,DURATION,scientific_name,"
"common_name,confidence,lat,lon,week,overlap,sensitivity")
out_string += header
folder_path, filename = os.path.split(afile_path)
parent_folder, folder_name = os.path.split(folder_path)
for timestamp in get_sorted_timestamps(r):
rstring = ""
start, end = timestamp.split("-", 1)
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += "\n{},{},{},{},{},{},{},{:.4f},{:.4f},{:.4f},{},{},{}".format(
parent_folder.rstrip("/"),
folder_name,
filename,
start,
float(end) - float(start),
label.split("_", 1)[0],
label.split("_", 1)[-1],
c[1],
cfg.LATITUDE,
cfg.LONGITUDE,
cfg.WEEK,
cfg.SIG_OVERLAP,
(1.0 - cfg.SIGMOID_SENSITIVITY) + 1.0,
)
# Write result string to file
out_string += rstring
else:
# CSV output file
header = "Start (s),End (s),Scientific name,Common name,Confidence\n"
# Write header
out_string += header
for timestamp in get_sorted_timestamps(r):
rstring = ""
for c in r[timestamp]:
start, end = timestamp.split("-", 1)
if c[1] > cfg.MIN_CONFIDENCE and (not cfg.SPECIES_LIST or c[0] in cfg.SPECIES_LIST):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += "{},{},{},{},{:.4f}\n".format(start, end, label.split("_", 1)[0],
label.split("_", 1)[-1], c[1])
# Write result string to file
out_string += rstring
# Save as file
with open(path, "w", encoding="utf-8") as rfile:
rfile.write(out_string)
return out_string
def get_sorted_timestamps(results: dict[str, list]):
"""Sorts the results based on the segments.
Args:
results: The dictionary with {segment: scores}.
Returns:
Returns the sorted list of segments and their scores.
"""
return sorted(results, key=lambda t: float(t.split("-", 1)[0]))
def get_raw_audio_from_file(fpath: str):
"""Reads an audio file.
Reads the file and splits the signal into chunks.
Args:
fpath: Path to the audio file.
Returns:
The signal split into a list of chunks.
"""
# Open file
sig, rate = audio.openAudioFile(fpath, cfg.SAMPLE_RATE)
# Split into raw audio chunks
chunks = audio.splitSignal(sig, rate, cfg.SIG_LENGTH, cfg.SIG_OVERLAP, cfg.SIG_MINLEN)
return chunks
def predict(samples):
"""Predicts the classes for the given samples.
Args:
samples: Samples to be predicted.
Returns:
The prediction scores.
"""
# Prepare sample and pass through model
data = np.array(samples, dtype="float32")
prediction = model.predict(data)
# Logits or sigmoid activations?
if cfg.APPLY_SIGMOID:
prediction = model.flat_sigmoid(np.array(prediction), sensitivity=-cfg.SIGMOID_SENSITIVITY)
return prediction
def analyze_file(item):
"""Analyzes a file.
Predicts the scores for the file and saves the results.
Args:
item: Tuple containing (file path, config)
Returns:
The `True` if the file was analyzed successfully.
"""
# Get file path and restore cfg
fpath: str = item[0]
cfg.set_config(item[1])
# Start time
start_time = datetime.datetime.now()
# Status
print(f"Analyzing {fpath}", flush=True)
try:
# Open audio file and split into 3-second chunks
chunks = get_raw_audio_from_file(fpath,duration=2)
# If no chunks, show error and skip
except Exception as ex:
print(f"Error: Cannot open audio file {fpath}", flush=True)
utils.writeErrorLog(ex)
return False
# Process each chunk
try:
start, end = 0, cfg.SIG_LENGTH
results = {}
samples = []
timestamps = []
for chunk_index, chunk in enumerate(chunks):
# Add to batch
samples.append(chunk)
timestamps.append([start, end])
# Advance start and end
start += cfg.SIG_LENGTH - cfg.SIG_OVERLAP
end = start + cfg.SIG_LENGTH
# Check if batch is full or last chunk
if len(samples) < cfg.BATCH_SIZE and chunk_index < len(chunks) - 1:
continue
# Predict
prediction = predict(samples)
# Add to results
for i in range(len(samples)):
# Get timestamp
s_start, s_end = timestamps[i]
# Get prediction
pred = prediction[i]
# Assign scores to labels
p_labels = zip(cfg.LABELS, pred)
# Sort by score
p_sorted = sorted(p_labels, key=operator.itemgetter(1), reverse=True)
# Store top 5 results and advance indices
results[str(s_start) + "-" + str(s_end)] = p_sorted
# Clear batch
samples = []
timestamps = []
except Exception as ex:
# Write error log
print(f"Error: Cannot analyze audio file {fpath}.\n", flush=True)
utils.writeErrorLog(ex)
return False
# Save as selection table
try:
# We have to check if output path is a file or directory
if not cfg.OUTPUT_PATH.rsplit(".", 1)[-1].lower() in ["txt", "csv"]:
rpath = fpath.replace(cfg.INPUT_PATH, "")
rpath = rpath[1:] if rpath[0] in ["/", "\\"] else rpath
# Make target directory if it doesn't exist
rdir = os.path.join(cfg.OUTPUT_PATH, os.path.dirname(rpath))
os.makedirs(rdir, exist_ok=True)
if cfg.RESULT_TYPE == "table":
rtype = "bat.selection.table.txt"
elif cfg.RESULT_TYPE == "audacity":
rtype = ".bat.results.txt"
else:
rtype = ".bat.results.csv"
out_string = save_result_file(results, os.path.join(cfg.OUTPUT_PATH, rpath.rsplit(".", 1)[0] + rtype), fpath)
else:
out_string = save_result_file(results, cfg.OUTPUT_PATH, fpath)
# Save as file
with open(cfg.OUTPUT_PATH + "Results.csv", "a", encoding="utf-8") as rfile:
postString = out_string.split("\n", 1)[1]
# rfile.write(fpath.join(postString.splitlines(True)))
rfile.write("\n"+fpath+"\n")
rfile.write(postString)
except Exception as ex:
# Write error log
print(f"Error: Cannot save result for {fpath}.\n", flush=True)
utils.writeErrorLog(ex)
return False
delta_time = (datetime.datetime.now() - start_time).total_seconds()
print("Finished {} in {:.2f} seconds".format(fpath, delta_time), flush=True)
return True
def set_analysis_location():
if args.area not in ["Bavaria", "Sweden", "EU", "Scotland", "UK", "USA","MarinCounty"]:
exit(code="Unknown location option.")
else:
args.lat = -1
args.lon = -1
# args.locale = "en"
if args.area == "Bavaria":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
args.locale = "de"
elif args.area == "EU":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
elif args.area == "Sweden":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Sweden-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Sweden-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
args.locale = "se"
elif args.area == "Scotland":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
elif args.area == "UK":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
elif args.area == "USA":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
elif args.area == "MarinCounty":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-MarinCounty-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-MarinCounty-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
else:
cfg.CUSTOM_CLASSIFIER = None
def set_paths():
# Set paths relative to script path (requested in #3)
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
cfg.MODEL_PATH = os.path.join(script_dir, cfg.MODEL_PATH)
cfg.LABELS_FILE = os.path.join(script_dir, cfg.LABELS_FILE)
cfg.TRANSLATED_LABELS_PATH = os.path.join(script_dir, cfg.TRANSLATED_LABELS_PATH)
cfg.MDATA_MODEL_PATH = os.path.join(script_dir, cfg.MDATA_MODEL_PATH)
cfg.CODES_FILE = os.path.join(script_dir, cfg.CODES_FILE)
cfg.ERROR_LOG_FILE = os.path.join(script_dir, cfg.ERROR_LOG_FILE)
cfg.BAT_CLASSIFIER_LOCATION = os.path.join(script_dir, cfg.BAT_CLASSIFIER_LOCATION)
cfg.INPUT_PATH = args.i
cfg.OUTPUT_PATH = args.o
def set_custom_classifier():
if args.classifier is None:
return
cfg.CUSTOM_CLASSIFIER = args.classifier # we treat this as absolute path, so no need to join with dirname
cfg.LABELS_FILE = args.classifier.replace(".tflite", "_Labels.txt") # same for labels file
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
args.lat = -1
args.lon = -1
# args.locale = "en"
def add_parser_arguments():
parser.add_argument("--area",
default="EU",
help="Location. Values in ['Bavaria', 'EU', 'Sweden','Scotland', 'UK', 'USA', 'MarinCounty']. "
"Defaults to Bavaria.")
parser.add_argument("--sensitivity",
type=float,
default=1.0,
help="Detection sensitivity; Higher values result in higher sensitivity. "
"Values in [0.5, 1.5]. Defaults to 1.0."
)
parser.add_argument("--min_conf",
type=float,
default=0.7,
help="Minimum confidence threshold. Values in [0.01, 0.99]. Defaults to 0.1.")
parser.add_argument("--overlap",
type=float,
default=0.0,
help="Overlap of prediction segments. Values in [0.0, 2.9]. Defaults to 0.0."
)
parser.add_argument("--rtype",
default="csv",
help="Specifies output format. Values in ['table', 'audacity', 'r', 'kaleidoscope', 'csv']. "
"Defaults to 'csv' (Raven selection table)."
)
parser.add_argument("--threads",
type=int,
default=4,
help="Number of CPU threads.")
parser.add_argument("--batchsize",
type=int,
default=1,
help="Number of samples to process at the same time. Defaults to 1."
)
parser.add_argument("--sf_thresh",
type=float,
default=0.03,
help="Minimum species occurrence frequency threshold for location filter. "
"Values in [0.01, 0.99]. Defaults to 0.03."
)
parser.add_argument("--segment",
default="off",
help="Generate audio files containing the detected segments. "
)
parser.add_argument("--spectrum",
default="off",
help="Generate mel spectrograms files containing the detected segments. "
)
parser.add_argument("--i",
default=cfg.INPUT_PATH_SAMPLES, # "put-your-files-here/",
help="Path to input file or folder. If this is a file, --o needs to be a file too.")
parser.add_argument("--o",
default=cfg.OUTPUT_PATH_SAMPLES,
help="Path to output file or folder. If this is a file, --i needs to be a file too.")
parser.add_argument("--classifier",
default=None,
help="Path to custom trained classifier. Defaults to None. "
"If set, --lat, --lon and --locale are ignored."
)
parser.add_argument("--slist",
default="",
help='Path to species list file or folder. If folder is provided, species list needs to be '
'named "species_list.txt". If lat and lon are provided, this list will be ignored.'
)
parser.add_argument("--lat",
type=float,
default=-1,
help="DISABLED. Set -1 to ignore.")
parser.add_argument("--lon",
type=float,
default=-1,
help="DISABLED. Set -1 to ignore.")
parser.add_argument("--week",
type=int,
default=-1,
help="DISABLED. Set -1 for year-round species list."
)
parser.add_argument("--locale",
default="en",
help="DISABLED. Defaults to 'en'."
)
def load_ebird_codes():
cfg.CODES = load_codes()
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
def load_species_list():
cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK = args.lat, args.lon, args.week
cfg.LOCATION_FILTER_THRESHOLD = max(0.01, min(0.99, float(args.sf_thresh)))
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
if cfg.LATITUDE == -1 and cfg.LONGITUDE == -1:
if not args.slist:
cfg.SPECIES_LIST_FILE = None
else:
cfg.SPECIES_LIST_FILE = os.path.join(script_dir, args.slist)
if os.path.isdir(cfg.SPECIES_LIST_FILE):
cfg.SPECIES_LIST_FILE = os.path.join(cfg.SPECIES_LIST_FILE, "species_list.txt")
cfg.SPECIES_LIST = utils.readLines(cfg.SPECIES_LIST_FILE)
else:
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = species.getSpeciesList(cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK, cfg.LOCATION_FILTER_THRESHOLD)
if not cfg.SPECIES_LIST:
print(f"Species list contains {len(cfg.LABELS)} species")
else:
print(f"Species list contains {len(cfg.SPECIES_LIST)} species")
def parse_input_files():
if os.path.isdir(cfg.INPUT_PATH):
cfg.FILE_LIST = utils.collect_audio_files(cfg.INPUT_PATH)
print(f"Found {len(cfg.FILE_LIST)} files to analyze")
else:
cfg.FILE_LIST = [cfg.INPUT_PATH]
def set_analysis_parameters():
cfg.MIN_CONFIDENCE = max(0.01, min(0.99, float(args.min_conf)))
cfg.SIGMOID_SENSITIVITY = max(0.5, min(1.0 - (float(args.sensitivity) - 1.0), 1.5))
cfg.SIG_OVERLAP = max(0.0, min(2.9, float(args.overlap)))
cfg.BATCH_SIZE = max(1, int(args.batchsize))
def set_hardware_parameters():
if os.path.isdir(cfg.INPUT_PATH):
cfg.CPU_THREADS = max(1, int(args.threads))
cfg.TFLITE_THREADS = 1
else:
cfg.CPU_THREADS = 1
cfg.TFLITE_THREADS = max(1, int(args.threads))
def load_translated_labels():
cfg.TRANSLATED_LABELS_PATH = cfg.TRANSLATED_BAT_LABELS_PATH
lfile = os.path.join(cfg.TRANSLATED_LABELS_PATH,
os.path.basename(cfg.LABELS_FILE).replace(".txt", "_{}.txt".format(args.locale))
)
if args.locale not in ["en"] and os.path.isfile(lfile):
cfg.TRANSLATED_LABELS = utils.readLines(lfile)
else:
cfg.TRANSLATED_LABELS = cfg.LABELS
def check_result_type():
cfg.RESULT_TYPE = args.rtype.lower()
if cfg.RESULT_TYPE not in ["table", "audacity", "r", "kaleidoscope", "csv"]:
cfg.RESULT_TYPE = "csv"
print("Unknown output option. Using csv output.")
if __name__ == "__main__":
freeze_support() # Freeze support for executable
parser = argparse.ArgumentParser(description="Analyze audio files with BattyBirdNET")
add_parser_arguments()
args = parser.parse_args()
set_paths()
load_ebird_codes()
set_custom_classifier()
check_result_type()
set_analysis_location()
load_translated_labels()
load_species_list()
parse_input_files()
set_analysis_parameters()
set_hardware_parameters()
# Add config items to each file list entry.
# We have to do this for Windows which does not
# support fork() and thus each process has to
# have its own config. USE LINUX!
flist = [(f, cfg.get_config()) for f in cfg.FILE_LIST]
# Analyze files
if cfg.CPU_THREADS < 2:
for entry in flist:
analyze_file(entry)
else:
with Pool(cfg.CPU_THREADS) as p:
p.map(analyze_file, flist)
if args.segment == "on" or args.spectrum == "on":
subprocess.run(["python3", "segments.py"])
if args.spectrum == "on":
# iterate through the segements folder subfolders, call the plotter
print("Spectrums in progress ...")
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
root_dir = pathlib.Path(os.path.join(script_dir, args.i + "/segments"))
for dir_name in os.listdir(root_dir):
f = os.path.join(root_dir, dir_name)
if not os.path.isfile(f):
print("Spectrum in progres for: " + f)
cmd = ['python3', "batchspec.py", f, f]
subprocess.run(cmd)
# A few examples to test
# python3 analyze.py --i example/ --o example/ --slist example/ --min_conf 0.5 --threads 4
# python3 analyze.py --i example/soundscape.wav --o example/soundscape.BirdNET.selection.table.txt --slist example/species_list.txt --threads 8
# python3 analyze.py --i example/ --o example/ --lat 42.5 --lon -76.45 --week 4 --sensitivity 1.0 --rtype table --locale de