Spaces:
Runtime error
Runtime error
################# | |
# Misc settings # | |
################# | |
# Random seed for gaussian noise | |
RANDOM_SEED = 42 | |
########################## | |
# Model paths and config # | |
########################## | |
# These BirdNET models are necessary also for detecting bats as we use their embeddings and classify | |
# them to identify the bats. | |
# MODEL_PATH = 'checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Model' # This will load the protobuf model | |
MODEL_PATH = 'checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Model_FP32.tflite' | |
MDATA_MODEL_PATH = 'checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_MData_Model_FP16.tflite' | |
LABELS_FILE = 'checkpoints/V2.4/BirdNET_GLOBAL_6K_V2.4_Labels.txt' | |
TRANSLATED_LABELS_PATH = 'labels/V2.4' | |
TRANSLATED_BAT_LABELS_PATH = 'labels/bats/' | |
# Path to custom trained classifier | |
# If None, no custom classifier will be used | |
# Make sure to set the LABELS_FILE above accordingly | |
CUSTOM_CLASSIFIER = None | |
################## | |
# Audio settings # | |
################## | |
# BirdNET uses a sample rate of 48kHz, so the model input size is | |
# (batch size, 48000 kHz * 3 seconds) = (1, 144000) | |
# Recordings will be resampled automatically. | |
# For bats we use: 144000 for 1 sec. | |
# Note that only SIG_LENGTH * SAMPLING_RATE = 144000 combinations will work, | |
# values possible e.g. 144000 240000 360000 check your classifier frequency! | |
SAMPLE_RATE: int = 256000 | |
# We're using 1-second chunks | |
SIG_LENGTH: float = 144000 / SAMPLE_RATE | |
# Define overlap between consecutive chunks < SIG_LENGTH; 0 = no overlap | |
SIG_OVERLAP: float = SIG_LENGTH / 4.0 | |
# Define minimum length of audio chunk for prediction, | |
# chunks shorter than SIG_LENGTH seconds will be padded with zeros | |
SIG_MINLEN: float = SIG_LENGTH / 3.0 | |
##################### | |
# Metadata settings # | |
##################### | |
# These settings are currently not in use for bat detection | |
LATITUDE = -1 | |
LONGITUDE = -1 | |
WEEK = -1 | |
LOCATION_FILTER_THRESHOLD = 0.03 | |
###################### | |
# Inference settings # | |
###################### | |
# If None or empty file, no custom species list will be used | |
# Note: Entries in this list have to match entries from the LABELS_FILE | |
# We use the 2021 eBird taxonomy for species names (Clements list) | |
CODES_FILE = 'eBird_taxonomy_codes_2021E.json' | |
SPECIES_LIST_FILE = 'example/species_list.txt' | |
# File input path and output path for selection tables | |
INPUT_PATH: str = '' | |
OUTPUT_PATH: str = '' | |
# Used for bats - the files here are supposed to be analyzed by default setting | |
INPUT_PATH_SAMPLES: str = 'put-your-files-here/' | |
OUTPUT_PATH_SAMPLES: str = 'put-your-files-here/results/' | |
BAT_CLASSIFIER_LOCATION: str = 'checkpoints/bats/v1.0' | |
ALLOWED_FILETYPES = ['wav', 'flac', 'mp3', 'ogg', 'm4a'] | |
# Number of threads to use for inference. | |
# Can be as high as number of CPUs in your system | |
CPU_THREADS: int = 2 | |
TFLITE_THREADS: int = 2 | |
# False will output logits, True will convert to sigmoid activations | |
APPLY_SIGMOID: bool = True | |
SIGMOID_SENSITIVITY: float = 1.0 | |
# Minimum confidence score to include in selection table | |
# (be aware: if APPLY_SIGMOID = False, this no longer represents | |
# probabilities and needs to be adjusted) | |
MIN_CONFIDENCE: float = 0.6 | |
# Number of samples to process at the same time. Higher values can increase | |
# processing speed, but will also increase memory usage. | |
# Might only be useful for GPU inference. | |
BATCH_SIZE: int = 1 | |
# Specifies the output format. 'table' denotes a Raven selection table, | |
# 'audacity' denotes a TXT file with the same format as Audacity timeline labels | |
# 'csv' denotes a CSV file with start, end, species and confidence. | |
RESULT_TYPE = 'csv' | |
##################### | |
# Training settings # | |
##################### | |
# Training data path | |
TRAIN_DATA_PATH = 'train_data/' | |
# Number of epochs to train for | |
TRAIN_EPOCHS: int = 100 | |
# Batch size for training | |
TRAIN_BATCH_SIZE: int = 32 | |
# Learning rate for training | |
TRAIN_LEARNING_RATE: float = 0.01 | |
# Number of hidden units in custom classifier | |
# If >0, a two-layer classifier will be trained | |
TRAIN_HIDDEN_UNITS: int = 0 | |
##################### | |
# Misc runtime vars # | |
##################### | |
CODES = {} | |
LABELS: list[str] = [] | |
TRANSLATED_LABELS: list[str] = [] | |
SPECIES_LIST: list[str] = [] | |
ERROR_LOG_FILE: str = 'error_log.txt' | |
FILE_LIST = [] | |
FILE_STORAGE_PATH = '' | |
###################### | |
# Get and set config # | |
###################### | |
def get_config(): | |
return { | |
'RANDOM_SEED': RANDOM_SEED, | |
'MODEL_PATH': MODEL_PATH, | |
'MDATA_MODEL_PATH': MDATA_MODEL_PATH, | |
'LABELS_FILE': LABELS_FILE, | |
'CUSTOM_CLASSIFIER': CUSTOM_CLASSIFIER, | |
'SAMPLE_RATE': SAMPLE_RATE, | |
'SIG_LENGTH': SIG_LENGTH, | |
'SIG_OVERLAP': SIG_OVERLAP, | |
'SIG_MINLEN': SIG_MINLEN, | |
'LATITUDE': LATITUDE, | |
'LONGITUDE': LONGITUDE, | |
'WEEK': WEEK, | |
'LOCATION_FILTER_THRESHOLD': LOCATION_FILTER_THRESHOLD, | |
'CODES_FILE': CODES_FILE, | |
'SPECIES_LIST_FILE': SPECIES_LIST_FILE, | |
'INPUT_PATH': INPUT_PATH, | |
'OUTPUT_PATH': OUTPUT_PATH, | |
'CPU_THREADS': CPU_THREADS, | |
'TFLITE_THREADS': TFLITE_THREADS, | |
'APPLY_SIGMOID': APPLY_SIGMOID, | |
'SIGMOID_SENSITIVITY': SIGMOID_SENSITIVITY, | |
'MIN_CONFIDENCE': MIN_CONFIDENCE, | |
'BATCH_SIZE': BATCH_SIZE, | |
'RESULT_TYPE': RESULT_TYPE, | |
'TRAIN_DATA_PATH': TRAIN_DATA_PATH, | |
'TRAIN_EPOCHS': TRAIN_EPOCHS, | |
'TRAIN_BATCH_SIZE': TRAIN_BATCH_SIZE, | |
'TRAIN_LEARNING_RATE': TRAIN_LEARNING_RATE, | |
'TRAIN_HIDDEN_UNITS': TRAIN_HIDDEN_UNITS, | |
'CODES': CODES, | |
'LABELS': LABELS, | |
'TRANSLATED_LABELS': TRANSLATED_LABELS, | |
'SPECIES_LIST': SPECIES_LIST, | |
'ERROR_LOG_FILE': ERROR_LOG_FILE, | |
'INPUT_PATH_SAMPLES': INPUT_PATH_SAMPLES, | |
'OUTPUT_PATH_SAMPLES': OUTPUT_PATH_SAMPLES, | |
'BAT_CLASSIFIER_LOCATION': BAT_CLASSIFIER_LOCATION, | |
'TRANSLATED_BAT_LABELS_PATH': TRANSLATED_BAT_LABELS_PATH | |
} | |
def set_config(c): | |
global RANDOM_SEED | |
global MODEL_PATH | |
global MDATA_MODEL_PATH | |
global LABELS_FILE | |
global CUSTOM_CLASSIFIER | |
global SAMPLE_RATE | |
global SIG_LENGTH | |
global SIG_OVERLAP | |
global SIG_MINLEN | |
global LATITUDE | |
global LONGITUDE | |
global WEEK | |
global LOCATION_FILTER_THRESHOLD | |
global CODES_FILE | |
global SPECIES_LIST_FILE | |
global INPUT_PATH | |
global OUTPUT_PATH | |
global CPU_THREADS | |
global TFLITE_THREADS | |
global APPLY_SIGMOID | |
global SIGMOID_SENSITIVITY | |
global MIN_CONFIDENCE | |
global BATCH_SIZE | |
global RESULT_TYPE | |
global TRAIN_DATA_PATH | |
global TRAIN_EPOCHS | |
global TRAIN_BATCH_SIZE | |
global TRAIN_LEARNING_RATE | |
global TRAIN_HIDDEN_UNITS | |
global CODES | |
global LABELS | |
global TRANSLATED_LABELS | |
global SPECIES_LIST | |
global ERROR_LOG_FILE | |
global INPUT_PATH_SAMPLES | |
global OUTPUT_PATH_SAMPLES | |
global BAT_CLASSIFIER_LOCATION | |
global TRANSLATED_BAT_LABELS_PATH | |
RANDOM_SEED = c['RANDOM_SEED'] | |
MODEL_PATH = c['MODEL_PATH'] | |
MDATA_MODEL_PATH = c['MDATA_MODEL_PATH'] | |
LABELS_FILE = c['LABELS_FILE'] | |
CUSTOM_CLASSIFIER = c['CUSTOM_CLASSIFIER'] | |
SAMPLE_RATE = c['SAMPLE_RATE'] | |
SIG_LENGTH = c['SIG_LENGTH'] | |
SIG_OVERLAP = c['SIG_OVERLAP'] | |
SIG_MINLEN = c['SIG_MINLEN'] | |
LATITUDE = c['LATITUDE'] | |
LONGITUDE = c['LONGITUDE'] | |
WEEK = c['WEEK'] | |
LOCATION_FILTER_THRESHOLD = c['LOCATION_FILTER_THRESHOLD'] | |
CODES_FILE = c['CODES_FILE'] | |
SPECIES_LIST_FILE = c['SPECIES_LIST_FILE'] | |
INPUT_PATH = c['INPUT_PATH'] | |
OUTPUT_PATH = c['OUTPUT_PATH'] | |
CPU_THREADS = c['CPU_THREADS'] | |
TFLITE_THREADS = c['TFLITE_THREADS'] | |
APPLY_SIGMOID = c['APPLY_SIGMOID'] | |
SIGMOID_SENSITIVITY = c['SIGMOID_SENSITIVITY'] | |
MIN_CONFIDENCE = c['MIN_CONFIDENCE'] | |
BATCH_SIZE = c['BATCH_SIZE'] | |
RESULT_TYPE = c['RESULT_TYPE'] | |
TRAIN_DATA_PATH = c['TRAIN_DATA_PATH'] | |
TRAIN_EPOCHS = c['TRAIN_EPOCHS'] | |
TRAIN_BATCH_SIZE = c['TRAIN_BATCH_SIZE'] | |
TRAIN_LEARNING_RATE = c['TRAIN_LEARNING_RATE'] | |
TRAIN_HIDDEN_UNITS = c['TRAIN_HIDDEN_UNITS'] | |
CODES = c['CODES'] | |
LABELS = c['LABELS'] | |
TRANSLATED_LABELS = c['TRANSLATED_LABELS'] | |
SPECIES_LIST = c['SPECIES_LIST'] | |
ERROR_LOG_FILE = c['ERROR_LOG_FILE'] | |
INPUT_PATH_SAMPLES = c['INPUT_PATH_SAMPLES'] | |
OUTPUT_PATH_SAMPLES = c['OUTPUT_PATH_SAMPLES'] | |
BAT_CLASSIFIER_LOCATION = c['BAT_CLASSIFIER_LOCATION'] | |
TRANSLATED_BAT_LABELS_PATH = c['TRANSLATED_BAT_LABELS_PATH'] | |