"""Extract segments from audio files based on BirdNET detections. Can be used to save the segments of the audio files for each detection. """ import argparse import os from multiprocessing import Pool import numpy as np import audio import config as cfg import utils # Set numpy random seed np.random.seed(cfg.RANDOM_SEED) def detectRType(line: str): """Detects the type of result file. Args: line: First line of text. Returns: Either "table", "r", "kaleidoscope", "csv" or "audacity". """ if line.lower().startswith("selection"): return "table" elif line.lower().startswith("filepath"): return "r" elif line.lower().startswith("indir"): return "kaleidoscope" elif line.lower().startswith("start (s)"): return "csv" else: return "audacity" def parseFolders(apath: str, rpath: str, allowed_result_filetypes: list[str] = ["txt", "csv"]) -> list[dict]: """Read audio and result files. Reads all audio files and BirdNET output inside directory recursively. Args: apath: Path to search for audio files. rpath: Path to search for result files. allowed_result_filetypes: List of extensions for the result files. Returns: A list of {"audio": path_to_audio, "result": path_to_result }. """ data = {} apath = apath.replace("/", os.sep).replace("\\", os.sep) rpath = rpath.replace("/", os.sep).replace("\\", os.sep) # Get all audio files for root, _, files in os.walk(apath): for f in files: if f.rsplit(".", 1)[-1].lower() in cfg.ALLOWED_FILETYPES: data[f.rsplit(".", 1)[0]] = {"audio": os.path.join(root, f), "result": ""} # Get all result files for root, _, files in os.walk(rpath): for f in files: if f.rsplit(".", 1)[-1] in allowed_result_filetypes and ".bat." in f: data[f.split(".bat.", 1)[0]]["result"] = os.path.join(root, f) # Convert to list flist = [f for f in data.values() if f["result"]] print(f"Found {len(flist)} audio files with valid result file.") return flist def parseFiles(flist: list[dict], max_segments=100): """Extracts the segments for all files. Args: flist: List of dict with {"audio": path_to_audio, "result": path_to_result }. max_segments: Number of segments per species. Returns: TODO @kahst """ species_segments: dict[str, list] = {} for f in flist: # Paths afile = f["audio"] rfile = f["result"] # Get all segments for result file segments = findSegments(afile, rfile) # Parse segments by species for s in segments: if s["species"] not in species_segments: species_segments[s["species"]] = [] species_segments[s["species"]].append(s) # Shuffle segments for each species and limit to max_segments for s in species_segments: np.random.shuffle(species_segments[s]) species_segments[s] = species_segments[s][:max_segments] # Make dict of segments per audio file segments: dict[str, list] = {} seg_cnt = 0 for s in species_segments: for seg in species_segments[s]: if seg["audio"] not in segments: segments[seg["audio"]] = [] segments[seg["audio"]].append(seg) seg_cnt += 1 print(f"Found {seg_cnt} segments in {len(segments)} audio files.") # Convert to list flist = [tuple(e) for e in segments.items()] return flist def findSegments(afile: str, rfile: str): """Extracts the segments for an audio file from the results file Args: afile: Path to the audio file. rfile: Path to the result file. Returns: A list of dicts in the form of {"audio": afile, "start": start, "end": end, "species": species, "confidence": confidence} """ segments: list[dict] = [] # Open and parse result file lines = utils.readLines(rfile) # Auto-detect result type rtype = detectRType(lines[0]) # Get start and end times based on rtype confidence = 0 start = end = 0.0 species = "" for i, line in enumerate(lines): if rtype == "table" and i > 0: d = line.split("\t") start = float(d[3]) end = float(d[4]) species = d[-2] confidence = float(d[-1]) elif rtype == "audacity": d = line.split("\t") start = float(d[0]) end = float(d[1]) species = d[2].split(", ")[1] confidence = float(d[-1]) elif rtype == "r" and i > 0: d = line.split(",") start = float(d[1]) end = float(d[2]) species = d[4] confidence = float(d[5]) elif rtype == "kaleidoscope" and i > 0: d = line.split(",") start = float(d[3]) end = float(d[4]) + start species = d[5] confidence = float(d[7]) elif rtype == "csv" and i > 0: d = line.split(",") start = float(d[0]) end = float(d[1]) species = d[3] confidence = float(d[4]) # Check if confidence is high enough if confidence >= cfg.MIN_CONFIDENCE: segments.append({"audio": afile, "start": start, "end": end, "species": species, "confidence": confidence}) return segments def extractSegments(item: tuple[tuple[str, list[dict]], float, dict[str]]): """Saves each segment separately. Creates an audio file for each species segment. Args: item: A tuple that contains ((audio file path, segments), segment length, config) """ # Paths and config afile = item[0][0] segments = item[0][1] seg_length = item[1] cfg.set_config(item[2]) # Status print(f"Extracting segments from {afile}") try: # Open audio file sig, _ = audio.openAudioFile(afile, cfg.SAMPLE_RATE) except Exception as ex: print(f"Error: Cannot open audio file {afile}", flush=True) utils.writeErrorLog(ex) return # Extract segments for seg_cnt, seg in enumerate(segments, 1): try: # Get start and end times start = int(seg["start"] * cfg.SAMPLE_RATE) end = int(seg["end"] * cfg.SAMPLE_RATE) offset = ((seg_length * cfg.SAMPLE_RATE) - (end - start)) // 2 start = max(0, start - offset) end = min(len(sig), end + offset) # Make sure segment is long enough if end > start: # Get segment raw audio from signal seg_sig = sig[int(start) : int(end)] # Make output path outpath = os.path.join(cfg.OUTPUT_PATH, seg["species"]) os.makedirs(outpath, exist_ok=True) # Save segment seg_name = "{:.3f}_{}_{}.wav".format( seg["confidence"], seg_cnt, seg["audio"].rsplit(os.sep, 1)[-1].rsplit(".", 1)[0] ) seg_path = os.path.join(outpath, seg_name) audio.saveSignal(seg_sig, seg_path) except Exception as ex: # Write error log print(f"Error: Cannot extract segments from {afile}.", flush=True) utils.writeErrorLog(ex) return False return True if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser(description="Extract segments from audio files based on BirdNET detections.") parser.add_argument("--audio", default="put-your-files-here/", help="Path to folder containing audio files.") parser.add_argument("--results", default="put-your-files-here/results", help="Path to folder containing result files.") parser.add_argument("--o", default="put-your-files-here/segments/", help="Output folder path for extracted segments.") parser.add_argument( "--min_conf", type=float, default=0.1, help="Minimum confidence threshold. Values in [0.01, 0.99]. Defaults to 0.1." ) parser.add_argument("--max_segments", type=int, default=100, help="Number of randomly extracted segments per species.") parser.add_argument( "--seg_length", type=float, default=3.0, help="Length of extracted segments in seconds. Defaults to 3.0." ) parser.add_argument("--threads", type=int, default=4, help="Number of CPU threads.") args = parser.parse_args() # Parse audio and result folders cfg.FILE_LIST = parseFolders(args.audio, args.results) # Set output folder cfg.OUTPUT_PATH = args.o # Set number of threads cfg.CPU_THREADS = int(args.threads) # Set confidence threshold cfg.MIN_CONFIDENCE = max(0.01, min(0.99, float(args.min_conf))) # Parse file list and make list of segments cfg.FILE_LIST = parseFiles(cfg.FILE_LIST, max(1, int(args.max_segments))) # Add config items to each file list entry. # We have to do this for Windows which does not # support fork() and thus each process has to # have its own config. USE LINUX! flist = [(entry, max(cfg.SIG_LENGTH, float(args.seg_length)), cfg.get_config()) for entry in cfg.FILE_LIST] # Extract segments if cfg.CPU_THREADS < 2: for entry in flist: extractSegments(entry) else: with Pool(cfg.CPU_THREADS) as p: p.map(extractSegments, flist) # A few examples to test # python3 segments.py --audio example/ --results example/ --o example/segments/ # python3 segments.py --audio example/ --results example/ --o example/segments/ --seg_length 5.0 --min_conf 0.1 --max_segments 100 --threads 4