File size: 6,569 Bytes
64bf706
 
 
 
 
 
 
 
3aaab28
 
64bf706
 
 
 
 
 
 
 
 
3aaab28
64bf706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
from models import VQVAE, build_vae_var
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, SiglipTextModel
from peft import LoraConfig, get_peft_model
from torchvision.transforms import ToPILImage
import random
import gradio as gr

class SimpleAdapter(nn.Module):
    def __init__(self, input_dim=512, hidden_dim=1024, out_dim=1024):
        super(SimpleAdapter, self).__init__()
        self.layer1 = nn.Linear(input_dim, hidden_dim)
        self.norm0 = nn.LayerNorm(input_dim)
        self.activation1 = nn.GELU()
        self.layer2 = nn.Linear(hidden_dim, out_dim)
        self.norm2 = nn.LayerNorm(out_dim)
        self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight, gain=0.001)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.LayerNorm):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)

    def forward(self, x):
        x = self.norm0(x)
        x = self.layer1(x)
        x = self.activation1(x)
        x = self.layer2(x)
        x = self.norm2(x)
        return x

class InrenceTextVAR(nn.Module):
    def __init__(self, pl_checkpoint=None, start_class_id=578, hugging_face_token=None, siglip_model='google/siglip-base-patch16-224', device="cpu", MODEL_DEPTH=16):
        super(InrenceTextVAR, self).__init__()
        self.device = device
        self.class_id = start_class_id
        # Define layers
        patch_nums = (1, 2, 3, 4, 5, 6, 8, 10, 13, 16)
        self.vae, self.var = build_vae_var(
            V=4096, Cvae=32, ch=160, share_quant_resi=4,
            device=device, patch_nums=patch_nums,
            num_classes=1000, depth=MODEL_DEPTH, shared_aln=False,
        )
        self.text_processor = AutoTokenizer.from_pretrained(siglip_model, token=hugging_face_token)
        self.siglip_text_encoder = SiglipTextModel.from_pretrained(siglip_model, token=hugging_face_token).to(device)
        self.adapter = SimpleAdapter(
            input_dim=self.siglip_text_encoder.config.hidden_size,
            out_dim=self.var.C  # Ensure dimensional consistency
        ).to(device)
        self.apply_lora_to_var()
        if pl_checkpoint is not None:
            state_dict = torch.load(pl_checkpoint, map_location="cpu")['state_dict']
            var_state_dict = {k[len('var.'):]: v for k, v in state_dict.items() if k.startswith('var.')}
            vae_state_dict = {k[len('vae.'):]: v for k, v in state_dict.items() if k.startswith('vae.')}
            adapter_state_dict = {k[len('adapter.'):]: v for k, v in state_dict.items() if k.startswith('adapter.')}
            self.var.load_state_dict(var_state_dict)
            self.vae.load_state_dict(vae_state_dict)
            self.adapter.load_state_dict(adapter_state_dict)
        del self.vae.encoder

    def apply_lora_to_var(self):
        """
        Applies LoRA (Low-Rank Adaptation) to the VAR model.
        """
        def find_linear_module_names(model):
            linear_module_names = []
            for name, module in model.named_modules():
                if isinstance(module, nn.Linear):
                    linear_module_names.append(name)
            return linear_module_names

        linear_module_names = find_linear_module_names(self.var)

        lora_config = LoraConfig(
            r=8,
            lora_alpha=32,
            target_modules=linear_module_names,
            lora_dropout=0.05,
            bias="none",
        )

        self.var = get_peft_model(self.var, lora_config)

    @torch.no_grad()
    def generate_image(self, text, beta=1, seed=None, more_smooth=False, top_k=0, top_p=0.9):
        if seed is None:
            seed = random.randint(0, 2**32 - 1)
        inputs = self.text_processor([text], padding="max_length", return_tensors="pt").to(self.device)
        outputs = self.siglip_text_encoder(**inputs)
        pooled_output = outputs.pooler_output  # pooled (EOS token) states
        pooled_output = F.normalize(pooled_output, p=2, dim=-1)  # Normalize delta condition
        cond_delta = F.normalize(pooled_output, p=2, dim=-1).to(self.device)  # Use correct device
        cond_delta = self.adapter(cond_delta)
        cond_delta = F.normalize(cond_delta, p=2, dim=-1)  # Normalize delta condition
        generated_images = self.var.autoregressive_infer_cfg(
            B=1,
            label_B=self.class_id,
            delta_condition=cond_delta[:1],
            beta=beta,
            alpha=1,
            top_k=top_k,
            top_p=top_p,
            more_smooth=more_smooth,
            g_seed=seed
        )
        image = ToPILImage()(generated_images[0].cpu())
        return image


if __name__ == '__main__':

    # Initialize the model
    checkpoint = 'VARtext_v1.pth'  # Replace with your actual checkpoint path
    device = 'cpu' if not torch.cuda.is_available() else 'cuda'
    state_dict = torch.load(checkpoint, map_location="cpu")
    model = InrenceTextVAR(device=device)
    model.load_state_dict(state_dict)
    model.to(device)

    def generate_image_gradio(text, beta=1.0, seed=None, more_smooth=False, top_k=0, top_p=0.9):
        print(f"Generating image for text: {text}\n"
              f"beta: {beta}\n"
              f"seed: {seed}\n"
              f"more_smooth: {more_smooth}\n"
              f"top_k: {top_k}\n"
              f"top_p: {top_p}\n")
        image = model.generate_image(text, beta=beta, seed=seed, more_smooth=more_smooth, top_k=int(top_k), top_p=top_p)
        return image

    with gr.Blocks() as demo:
        gr.Markdown("# Text to Image/Video Generator")
        with gr.Tab("Generate Image"):
            text_input = gr.Textbox(label="Input Text")
            beta_input = gr.Slider(label="Beta", minimum=0.0, maximum=2.5, step=0.05, value=1.0)
            seed_input = gr.Number(label="Seed", value=None)
            more_smooth_input = gr.Checkbox(label="More Smooth", value=False)
            top_k_input = gr.Number(label="Top K", value=0)
            top_p_input = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, step=0.01, value=0.9)
            generate_button = gr.Button("Generate Image")
            image_output = gr.Image(label="Generated Image")
            generate_button.click(
                generate_image_gradio,
                inputs=[text_input, beta_input, seed_input, more_smooth_input, top_k_input, top_p_input],
                outputs=image_output
            )

    demo.launch()