Spaces:
Running
Running
File size: 9,004 Bytes
64bf706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import torch
import torch.nn as nn
import torch.nn.functional as F
# this file only provides the 2 modules used in VQVAE
__all__ = ['Encoder', 'Decoder',]
"""
References: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/diffusionmodules/model.py
"""
# swish
def nonlinearity(x):
return x * torch.sigmoid(x)
def Normalize(in_channels, num_groups=32):
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
class Upsample2x(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
return self.conv(F.interpolate(x, scale_factor=2, mode='nearest'))
class Downsample2x(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x):
return self.conv(F.pad(x, pad=(0, 1, 0, 1), mode='constant', value=0))
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, dropout): # conv_shortcut=False, # conv_shortcut: always False in VAE
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout) if dropout > 1e-6 else nn.Identity()
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
else:
self.nin_shortcut = nn.Identity()
def forward(self, x):
h = self.conv1(F.silu(self.norm1(x), inplace=True))
h = self.conv2(self.dropout(F.silu(self.norm2(h), inplace=True)))
return self.nin_shortcut(x) + h
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.C = in_channels
self.norm = Normalize(in_channels)
self.qkv = torch.nn.Conv2d(in_channels, 3*in_channels, kernel_size=1, stride=1, padding=0)
self.w_ratio = int(in_channels) ** (-0.5)
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
qkv = self.qkv(self.norm(x))
B, _, H, W = qkv.shape # should be B,3C,H,W
C = self.C
q, k, v = qkv.reshape(B, 3, C, H, W).unbind(1)
# compute attention
q = q.view(B, C, H * W).contiguous()
q = q.permute(0, 2, 1).contiguous() # B,HW,C
k = k.view(B, C, H * W).contiguous() # B,C,HW
w = torch.bmm(q, k).mul_(self.w_ratio) # B,HW,HW w[B,i,j]=sum_c q[B,i,C]k[B,C,j]
w = F.softmax(w, dim=2)
# attend to values
v = v.view(B, C, H * W).contiguous()
w = w.permute(0, 2, 1).contiguous() # B,HW,HW (first HW of k, second of q)
h = torch.bmm(v, w) # B, C,HW (HW of q) h[B,C,j] = sum_i v[B,C,i] w[B,i,j]
h = h.view(B, C, H, W).contiguous()
return x + self.proj_out(h)
def make_attn(in_channels, using_sa=True):
return AttnBlock(in_channels) if using_sa else nn.Identity()
class Encoder(nn.Module):
def __init__(
self, *, ch=128, ch_mult=(1, 2, 4, 8), num_res_blocks=2,
dropout=0.0, in_channels=3,
z_channels, double_z=False, using_sa=True, using_mid_sa=True,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.downsample_ratio = 2 ** (self.num_resolutions - 1)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
# downsampling
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
in_ch_mult = (1,) + tuple(ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dropout=dropout))
block_in = block_out
if i_level == self.num_resolutions - 1 and using_sa:
attn.append(make_attn(block_in, using_sa=True))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample2x(block_in)
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout)
self.mid.attn_1 = make_attn(block_in, using_sa=using_mid_sa)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in, (2 * z_channels if double_z else z_channels), kernel_size=3, stride=1, padding=1)
def forward(self, x):
# downsampling
h = self.conv_in(x)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if i_level != self.num_resolutions - 1:
h = self.down[i_level].downsample(h)
# middle
h = self.mid.block_2(self.mid.attn_1(self.mid.block_1(h)))
# end
h = self.conv_out(F.silu(self.norm_out(h), inplace=True))
return h
class Decoder(nn.Module):
def __init__(
self, *, ch=128, ch_mult=(1, 2, 4, 8), num_res_blocks=2,
dropout=0.0, in_channels=3, # in_channels: raw img channels
z_channels, using_sa=True, using_mid_sa=True,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
# compute in_ch_mult, block_in and curr_res at lowest res
in_ch_mult = (1,) + tuple(ch_mult)
block_in = ch * ch_mult[self.num_resolutions - 1]
# z to block_in
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout)
self.mid.attn_1 = make_attn(block_in, using_sa=using_mid_sa)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dropout=dropout))
block_in = block_out
if i_level == self.num_resolutions-1 and using_sa:
attn.append(make_attn(block_in, using_sa=True))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample2x(block_in)
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, z):
# z to block_in
# middle
h = self.mid.block_2(self.mid.attn_1(self.mid.block_1(self.conv_in(z))))
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.conv_out(F.silu(self.norm_out(h), inplace=True))
return h
|