Spaces:
Running
Running
from typing import Tuple | |
import torch.nn as nn | |
from .quant import VectorQuantizer2 | |
from .var import VAR | |
from .vqvae import VQVAE | |
def build_vae_var( | |
# Shared args | |
device, patch_nums=(1, 2, 3, 4, 5, 6, 8, 10, 13, 16), # 10 steps by default | |
# VQVAE args | |
V=4096, Cvae=32, ch=160, share_quant_resi=4, | |
# VAR args | |
num_classes=1000, depth=16, shared_aln=False, attn_l2_norm=True, | |
flash_if_available=True, fused_if_available=True, | |
init_adaln=0.5, init_adaln_gamma=1e-5, init_head=0.02, init_std=-1, # init_std < 0: automated | |
) -> Tuple[VQVAE, VAR]: | |
heads = depth | |
width = depth * 64 | |
dpr = 0.1 * depth/24 | |
# disable built-in initialization for speed | |
for clz in (nn.Linear, nn.LayerNorm, nn.BatchNorm2d, nn.SyncBatchNorm, nn.Conv1d, nn.Conv2d, nn.ConvTranspose1d, nn.ConvTranspose2d): | |
setattr(clz, 'reset_parameters', lambda self: None) | |
# build models | |
vae_local = VQVAE(vocab_size=V, z_channels=Cvae, ch=ch, test_mode=True, share_quant_resi=share_quant_resi, v_patch_nums=patch_nums).to(device) | |
var_wo_ddp = VAR( | |
vae_local=vae_local, | |
num_classes=num_classes, depth=depth, embed_dim=width, num_heads=heads, drop_rate=0., attn_drop_rate=0., drop_path_rate=dpr, | |
norm_eps=1e-6, shared_aln=shared_aln, cond_drop_rate=0.1, | |
attn_l2_norm=attn_l2_norm, | |
patch_nums=patch_nums, | |
flash_if_available=flash_if_available, fused_if_available=fused_if_available, | |
).to(device) | |
var_wo_ddp.init_weights(init_adaln=init_adaln, init_adaln_gamma=init_adaln_gamma, init_head=init_head, init_std=init_std) | |
return vae_local, var_wo_ddp | |