Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# this file only provides the 2 modules used in VQVAE | |
__all__ = ['Encoder', 'Decoder',] | |
""" | |
References: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/diffusionmodules/model.py | |
""" | |
# swish | |
def nonlinearity(x): | |
return x * torch.sigmoid(x) | |
def Normalize(in_channels, num_groups=32): | |
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
class Upsample2x(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) | |
def forward(self, x): | |
return self.conv(F.interpolate(x, scale_factor=2, mode='nearest')) | |
class Downsample2x(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) | |
def forward(self, x): | |
return self.conv(F.pad(x, pad=(0, 1, 0, 1), mode='constant', value=0)) | |
class ResnetBlock(nn.Module): | |
def __init__(self, *, in_channels, out_channels=None, dropout): # conv_shortcut=False, # conv_shortcut: always False in VAE | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.norm1 = Normalize(in_channels) | |
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.norm2 = Normalize(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) if dropout > 1e-6 else nn.Identity() | |
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if self.in_channels != self.out_channels: | |
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
else: | |
self.nin_shortcut = nn.Identity() | |
def forward(self, x): | |
h = self.conv1(F.silu(self.norm1(x), inplace=True)) | |
h = self.conv2(self.dropout(F.silu(self.norm2(h), inplace=True))) | |
return self.nin_shortcut(x) + h | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.C = in_channels | |
self.norm = Normalize(in_channels) | |
self.qkv = torch.nn.Conv2d(in_channels, 3*in_channels, kernel_size=1, stride=1, padding=0) | |
self.w_ratio = int(in_channels) ** (-0.5) | |
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
qkv = self.qkv(self.norm(x)) | |
B, _, H, W = qkv.shape # should be B,3C,H,W | |
C = self.C | |
q, k, v = qkv.reshape(B, 3, C, H, W).unbind(1) | |
# compute attention | |
q = q.view(B, C, H * W).contiguous() | |
q = q.permute(0, 2, 1).contiguous() # B,HW,C | |
k = k.view(B, C, H * W).contiguous() # B,C,HW | |
w = torch.bmm(q, k).mul_(self.w_ratio) # B,HW,HW w[B,i,j]=sum_c q[B,i,C]k[B,C,j] | |
w = F.softmax(w, dim=2) | |
# attend to values | |
v = v.view(B, C, H * W).contiguous() | |
w = w.permute(0, 2, 1).contiguous() # B,HW,HW (first HW of k, second of q) | |
h = torch.bmm(v, w) # B, C,HW (HW of q) h[B,C,j] = sum_i v[B,C,i] w[B,i,j] | |
h = h.view(B, C, H, W).contiguous() | |
return x + self.proj_out(h) | |
def make_attn(in_channels, using_sa=True): | |
return AttnBlock(in_channels) if using_sa else nn.Identity() | |
class Encoder(nn.Module): | |
def __init__( | |
self, *, ch=128, ch_mult=(1, 2, 4, 8), num_res_blocks=2, | |
dropout=0.0, in_channels=3, | |
z_channels, double_z=False, using_sa=True, using_mid_sa=True, | |
): | |
super().__init__() | |
self.ch = ch | |
self.num_resolutions = len(ch_mult) | |
self.downsample_ratio = 2 ** (self.num_resolutions - 1) | |
self.num_res_blocks = num_res_blocks | |
self.in_channels = in_channels | |
# downsampling | |
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dropout=dropout)) | |
block_in = block_out | |
if i_level == self.num_resolutions - 1 and using_sa: | |
attn.append(make_attn(block_in, using_sa=True)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
down.downsample = Downsample2x(block_in) | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) | |
self.mid.attn_1 = make_attn(block_in, using_sa=using_mid_sa) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, (2 * z_channels if double_z else z_channels), kernel_size=3, stride=1, padding=1) | |
def forward(self, x): | |
# downsampling | |
h = self.conv_in(x) | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](h) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
if i_level != self.num_resolutions - 1: | |
h = self.down[i_level].downsample(h) | |
# middle | |
h = self.mid.block_2(self.mid.attn_1(self.mid.block_1(h))) | |
# end | |
h = self.conv_out(F.silu(self.norm_out(h), inplace=True)) | |
return h | |
class Decoder(nn.Module): | |
def __init__( | |
self, *, ch=128, ch_mult=(1, 2, 4, 8), num_res_blocks=2, | |
dropout=0.0, in_channels=3, # in_channels: raw img channels | |
z_channels, using_sa=True, using_mid_sa=True, | |
): | |
super().__init__() | |
self.ch = ch | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.in_channels = in_channels | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,) + tuple(ch_mult) | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) | |
self.mid.attn_1 = make_attn(block_in, using_sa=using_mid_sa) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dropout=dropout)) | |
block_in = block_out | |
if i_level == self.num_resolutions-1 and using_sa: | |
attn.append(make_attn(block_in, using_sa=True)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample2x(block_in) | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, in_channels, kernel_size=3, stride=1, padding=1) | |
def forward(self, z): | |
# z to block_in | |
# middle | |
h = self.mid.block_2(self.mid.attn_1(self.mid.block_1(self.conv_in(z)))) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
h = self.conv_out(F.silu(self.norm_out(h), inplace=True)) | |
return h | |