from typing import Tuple import torch.nn as nn from .quant import VectorQuantizer2 from .var import VAR from .vqvae import VQVAE def build_vae_var( # Shared args device, patch_nums=(1, 2, 3, 4, 5, 6, 8, 10, 13, 16), # 10 steps by default # VQVAE args V=4096, Cvae=32, ch=160, share_quant_resi=4, # VAR args num_classes=1000, depth=16, shared_aln=False, attn_l2_norm=True, flash_if_available=True, fused_if_available=True, init_adaln=0.5, init_adaln_gamma=1e-5, init_head=0.02, init_std=-1, # init_std < 0: automated ) -> Tuple[VQVAE, VAR]: heads = depth width = depth * 64 dpr = 0.1 * depth/24 # disable built-in initialization for speed for clz in (nn.Linear, nn.LayerNorm, nn.BatchNorm2d, nn.SyncBatchNorm, nn.Conv1d, nn.Conv2d, nn.ConvTranspose1d, nn.ConvTranspose2d): setattr(clz, 'reset_parameters', lambda self: None) # build models vae_local = VQVAE(vocab_size=V, z_channels=Cvae, ch=ch, test_mode=True, share_quant_resi=share_quant_resi, v_patch_nums=patch_nums).to(device) var_wo_ddp = VAR( vae_local=vae_local, num_classes=num_classes, depth=depth, embed_dim=width, num_heads=heads, drop_rate=0., attn_drop_rate=0., drop_path_rate=dpr, norm_eps=1e-6, shared_aln=shared_aln, cond_drop_rate=0.1, attn_l2_norm=attn_l2_norm, patch_nums=patch_nums, flash_if_available=flash_if_available, fused_if_available=fused_if_available, ).to(device) var_wo_ddp.init_weights(init_adaln=init_adaln, init_adaln_gamma=init_adaln_gamma, init_head=init_head, init_std=init_std) return vae_local, var_wo_ddp