import datetime import functools import os import sys from typing import List from typing import Union import torch import torch.distributed as tdist import torch.multiprocessing as mp __rank, __local_rank, __world_size, __device = 0, 0, 1, 'cuda' if torch.cuda.is_available() else 'cpu' __initialized = False def initialized(): return __initialized def initialize(fork=False, backend='nccl', gpu_id_if_not_distibuted=0, timeout=30): global __device if not torch.cuda.is_available(): print(f'[dist initialize] cuda is not available, use cpu instead', file=sys.stderr) return elif 'RANK' not in os.environ: torch.cuda.set_device(gpu_id_if_not_distibuted) __device = torch.empty(1).cuda().device print(f'[dist initialize] env variable "RANK" is not set, use {__device} as the device', file=sys.stderr) return # then 'RANK' must exist global_rank, num_gpus = int(os.environ['RANK']), torch.cuda.device_count() local_rank = global_rank % num_gpus torch.cuda.set_device(local_rank) # ref: https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/dist_utils.py#L29 if mp.get_start_method(allow_none=True) is None: method = 'fork' if fork else 'spawn' print(f'[dist initialize] mp method={method}') mp.set_start_method(method) tdist.init_process_group(backend=backend, timeout=datetime.timedelta(seconds=timeout*60)) global __rank, __local_rank, __world_size, __initialized __local_rank = local_rank __rank, __world_size = tdist.get_rank(), tdist.get_world_size() __device = torch.empty(1).cuda().device __initialized = True assert tdist.is_initialized(), 'torch.distributed is not initialized!' print(f'[lrk={get_local_rank()}, rk={get_rank()}]') def get_rank(): return __rank def get_local_rank(): return __local_rank def get_world_size(): return __world_size def get_device(): return __device def set_gpu_id(gpu_id: int): if gpu_id is None: return global __device if isinstance(gpu_id, (str, int)): torch.cuda.set_device(int(gpu_id)) __device = torch.empty(1).cuda().device else: raise NotImplementedError def is_master(): return __rank == 0 def is_local_master(): return __local_rank == 0 def new_group(ranks: List[int]): if __initialized: return tdist.new_group(ranks=ranks) return None def barrier(): if __initialized: tdist.barrier() def allreduce(t: torch.Tensor, async_op=False): if __initialized: if not t.is_cuda: cu = t.detach().cuda() ret = tdist.all_reduce(cu, async_op=async_op) t.copy_(cu.cpu()) else: ret = tdist.all_reduce(t, async_op=async_op) return ret return None def allgather(t: torch.Tensor, cat=True) -> Union[List[torch.Tensor], torch.Tensor]: if __initialized: if not t.is_cuda: t = t.cuda() ls = [torch.empty_like(t) for _ in range(__world_size)] tdist.all_gather(ls, t) else: ls = [t] if cat: ls = torch.cat(ls, dim=0) return ls def allgather_diff_shape(t: torch.Tensor, cat=True) -> Union[List[torch.Tensor], torch.Tensor]: if __initialized: if not t.is_cuda: t = t.cuda() t_size = torch.tensor(t.size(), device=t.device) ls_size = [torch.empty_like(t_size) for _ in range(__world_size)] tdist.all_gather(ls_size, t_size) max_B = max(size[0].item() for size in ls_size) pad = max_B - t_size[0].item() if pad: pad_size = (pad, *t.size()[1:]) t = torch.cat((t, t.new_empty(pad_size)), dim=0) ls_padded = [torch.empty_like(t) for _ in range(__world_size)] tdist.all_gather(ls_padded, t) ls = [] for t, size in zip(ls_padded, ls_size): ls.append(t[:size[0].item()]) else: ls = [t] if cat: ls = torch.cat(ls, dim=0) return ls def broadcast(t: torch.Tensor, src_rank) -> None: if __initialized: if not t.is_cuda: cu = t.detach().cuda() tdist.broadcast(cu, src=src_rank) t.copy_(cu.cpu()) else: tdist.broadcast(t, src=src_rank) def dist_fmt_vals(val: float, fmt: Union[str, None] = '%.2f') -> Union[torch.Tensor, List]: if not initialized(): return torch.tensor([val]) if fmt is None else [fmt % val] ts = torch.zeros(__world_size) ts[__rank] = val allreduce(ts) if fmt is None: return ts return [fmt % v for v in ts.cpu().numpy().tolist()] def master_only(func): @functools.wraps(func) def wrapper(*args, **kwargs): force = kwargs.pop('force', False) if force or is_master(): ret = func(*args, **kwargs) else: ret = None barrier() return ret return wrapper def local_master_only(func): @functools.wraps(func) def wrapper(*args, **kwargs): force = kwargs.pop('force', False) if force or is_local_master(): ret = func(*args, **kwargs) else: ret = None barrier() return ret return wrapper def for_visualize(func): @functools.wraps(func) def wrapper(*args, **kwargs): if is_master(): # with torch.no_grad(): ret = func(*args, **kwargs) else: ret = None return ret return wrapper def finalize(): if __initialized: tdist.destroy_process_group()