Spaces:
Sleeping
Sleeping
Amitontheweb
commited on
Upload app.py
Browse files17-8-2024
v1.0
app.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Gradio Params Playground
|
3 |
+
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import torch
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
|
9 |
+
# Load default model as GPT2
|
10 |
+
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
13 |
+
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
|
14 |
+
|
15 |
+
|
16 |
+
# Define functions
|
17 |
+
|
18 |
+
|
19 |
+
global chosen_strategy
|
20 |
+
|
21 |
+
def generate(input_text, number_steps, number_beams, number_beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected):
|
22 |
+
|
23 |
+
chosen_strategy = strategy_selected
|
24 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(torch_device)
|
25 |
+
|
26 |
+
if chosen_strategy == "Sampling":
|
27 |
+
|
28 |
+
top_p_flag = top_p_box
|
29 |
+
top_k_flag = top_k_box
|
30 |
+
|
31 |
+
outputs = model.generate(
|
32 |
+
**inputs,
|
33 |
+
max_new_tokens=number_steps,
|
34 |
+
return_dict_in_generate=False,
|
35 |
+
temperature=temperature,
|
36 |
+
top_p=top_p if top_p_flag else None,
|
37 |
+
top_k=top_k if top_k_flag else None,
|
38 |
+
no_repeat_ngram_size = no_repeat_ngram_size,
|
39 |
+
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
|
40 |
+
output_scores=False,
|
41 |
+
do_sample=True
|
42 |
+
)
|
43 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
44 |
+
|
45 |
+
elif chosen_strategy == "Beam Search":
|
46 |
+
|
47 |
+
beam_temp_flag = beam_temperature
|
48 |
+
early_stop_flag = early_stopping
|
49 |
+
|
50 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(torch_device)
|
51 |
+
outputs = model.generate(
|
52 |
+
|
53 |
+
**inputs,
|
54 |
+
max_new_tokens=number_steps,
|
55 |
+
num_beams=number_beams,
|
56 |
+
num_return_sequences=min(num_return_sequences, number_beams),
|
57 |
+
return_dict_in_generate=False,
|
58 |
+
length_penalty=length_penalty,
|
59 |
+
temperature=temperature if beam_temp_flag else None,
|
60 |
+
no_repeat_ngram_size = no_repeat_ngram_size,
|
61 |
+
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
|
62 |
+
early_stopping = True if early_stop_flag else False,
|
63 |
+
output_scores=False,
|
64 |
+
do_sample=True if beam_temp_flag else False
|
65 |
+
)
|
66 |
+
|
67 |
+
beam_options_list = []
|
68 |
+
for i, beam_output in enumerate(outputs):
|
69 |
+
beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True))
|
70 |
+
options = "\n\n - Option - \n".join(beam_options_list)
|
71 |
+
return ("Beam Search Generation" + "\n" + "-" * 10 + "\n" + options)
|
72 |
+
#print ("Option {}: {}\n".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))
|
73 |
+
|
74 |
+
elif chosen_strategy == "Diversity Beam Search":
|
75 |
+
|
76 |
+
early_stop_flag = early_stopping
|
77 |
+
|
78 |
+
if number_beam_groups == 1:
|
79 |
+
number_beam_groups = 2
|
80 |
+
|
81 |
+
|
82 |
+
if number_beam_groups > number_beams:
|
83 |
+
number_beams = number_beam_groups
|
84 |
+
|
85 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(torch_device)
|
86 |
+
outputs = model.generate(
|
87 |
+
|
88 |
+
**inputs,
|
89 |
+
max_new_tokens=number_steps,
|
90 |
+
num_beams=number_beams,
|
91 |
+
num_beam_groups=number_beam_groups,
|
92 |
+
diversity_penalty=float(diversity_penalty),
|
93 |
+
num_return_sequences=min(num_return_sequences, number_beams),
|
94 |
+
return_dict_in_generate=False,
|
95 |
+
length_penalty=length_penalty,
|
96 |
+
no_repeat_ngram_size = no_repeat_ngram_size,
|
97 |
+
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
|
98 |
+
early_stopping = True if early_stop_flag else False,
|
99 |
+
output_scores=False,
|
100 |
+
)
|
101 |
+
|
102 |
+
beam_options_list = []
|
103 |
+
for i, beam_output in enumerate(outputs):
|
104 |
+
beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True))
|
105 |
+
options = "\n\n ------ Option ------- \n".join(beam_options_list)
|
106 |
+
return ("Diversity Beam Search Generation" + "\n" + "-" * 10 + "\n" + options)
|
107 |
+
|
108 |
+
elif chosen_strategy == "Contrastive":
|
109 |
+
|
110 |
+
top_k_flag = top_k_box
|
111 |
+
|
112 |
+
outputs = model.generate(
|
113 |
+
**inputs,
|
114 |
+
max_new_tokens=number_steps,
|
115 |
+
return_dict_in_generate=False,
|
116 |
+
temperature=temperature,
|
117 |
+
penalty_alpha=penalty_alpha,
|
118 |
+
top_k=top_k if top_k_flag else None,
|
119 |
+
no_repeat_ngram_size = no_repeat_ngram_size,
|
120 |
+
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
|
121 |
+
output_scores=False,
|
122 |
+
do_sample=True
|
123 |
+
)
|
124 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
125 |
+
|
126 |
+
|
127 |
+
#--------ON SELECTING MODEL------------------------
|
128 |
+
|
129 |
+
def load_model(model_selected):
|
130 |
+
|
131 |
+
if model_selected == "gpt2":
|
132 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
133 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id).to(torch_device)
|
134 |
+
#print (model_selected + " loaded")
|
135 |
+
|
136 |
+
if model_selected == "Gemma 2":
|
137 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
138 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b").to(torch_device)
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
#--------ON SELECT NO. OF RETURN SEQUENCES----------
|
143 |
+
|
144 |
+
def change_num_return_sequences(n_beams, num_return_sequences):
|
145 |
+
|
146 |
+
if (num_return_sequences > n_beams):
|
147 |
+
return gr.Slider(
|
148 |
+
label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=n_beams)
|
149 |
+
|
150 |
+
return gr.Slider (
|
151 |
+
label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=num_return_sequences)
|
152 |
+
|
153 |
+
#--------ON CHANGING NO OF BEAMS------------------
|
154 |
+
|
155 |
+
def popualate_beam_groups (n_beams):
|
156 |
+
|
157 |
+
global chosen_strategy
|
158 |
+
no_of_beams = n_beams
|
159 |
+
No_beam_group_list = [] #list for beam group selection
|
160 |
+
for y in range (2, no_of_beams+1):
|
161 |
+
if no_of_beams % y == 0: #perfectly divisible
|
162 |
+
No_beam_group_list.append (y) #add to list, use as list for beam group selection
|
163 |
+
|
164 |
+
if chosen_strategy == "Diversity Beam Search":
|
165 |
+
return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=True),
|
166 |
+
num_return_sequences: gr.Slider(maximum=no_of_beams)
|
167 |
+
}
|
168 |
+
if chosen_strategy == "Beam Search":
|
169 |
+
return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=False),
|
170 |
+
num_return_sequences: gr.Slider(maximum=no_of_beams)
|
171 |
+
}
|
172 |
+
|
173 |
+
#-----------ON SELECTING TOP P / TOP K--------------
|
174 |
+
|
175 |
+
def top_p_switch(input_p_box):
|
176 |
+
value = input_p_box
|
177 |
+
if value:
|
178 |
+
return {top_p: gr.Slider(visible = True)}
|
179 |
+
else:
|
180 |
+
return {top_p: gr.Slider(visible = False)}
|
181 |
+
|
182 |
+
|
183 |
+
def top_k_switch(input_k_box):
|
184 |
+
value = input_k_box
|
185 |
+
if value:
|
186 |
+
return {top_k: gr.Slider(visible = True)}
|
187 |
+
else:
|
188 |
+
return {top_k: gr.Slider(visible = False)}
|
189 |
+
|
190 |
+
|
191 |
+
#-----------ON SELECTING BEAM TEMPERATURE--------------
|
192 |
+
|
193 |
+
def beam_temp_switch (input):
|
194 |
+
value = input
|
195 |
+
if value:
|
196 |
+
return {temperature: gr.Slider (visible=True)}
|
197 |
+
else:
|
198 |
+
return {temperature: gr.Slider (visible=False)}
|
199 |
+
|
200 |
+
|
201 |
+
#-----------ON COOOSING STRATEGY: HIDE/DISPLAY PARAMS -----------
|
202 |
+
|
203 |
+
def select_strategy(input_strategy):
|
204 |
+
|
205 |
+
global chosen_strategy
|
206 |
+
chosen_strategy = input_strategy
|
207 |
+
|
208 |
+
if chosen_strategy == "Beam Search":
|
209 |
+
return {n_beams: gr.Slider(visible=True),
|
210 |
+
num_return_sequences: gr.Slider(visible=True),
|
211 |
+
beam_temperature: gr.Checkbox(visible=True),
|
212 |
+
early_stopping: gr.Checkbox(visible=True),
|
213 |
+
length_penalty: gr.Slider(visible=True),
|
214 |
+
beam_groups: gr.Dropdown(visible=False),
|
215 |
+
diversity_penalty: gr.Slider(visible=False),
|
216 |
+
temperature: gr.Slider (visible=False),
|
217 |
+
top_k: gr.Slider(visible=False),
|
218 |
+
top_p: gr.Slider(visible=False),
|
219 |
+
top_k_box: gr.Checkbox(visible = False),
|
220 |
+
top_p_box: gr.Checkbox(visible = False),
|
221 |
+
penalty_alpha: gr.Slider (visible=False)
|
222 |
+
|
223 |
+
}
|
224 |
+
if chosen_strategy == "Sampling":
|
225 |
+
if top_k_box == True:
|
226 |
+
{top_k: gr.Slider(visible = True)}
|
227 |
+
if top_p_box == True:
|
228 |
+
{top_p: gr.Slider(visible = True)}
|
229 |
+
|
230 |
+
return {
|
231 |
+
temperature: gr.Slider (visible=True),
|
232 |
+
top_p: gr.Slider(visible=False),
|
233 |
+
top_k: gr.Slider(visible=False),
|
234 |
+
n_beams: gr.Slider(visible=False),
|
235 |
+
beam_groups: gr.Dropdown(visible=False),
|
236 |
+
diversity_penalty: gr.Slider(visible=False),
|
237 |
+
num_return_sequences: gr.Slider(visible=False),
|
238 |
+
beam_temperature: gr.Checkbox(visible=False),
|
239 |
+
early_stopping: gr.Checkbox(visible=False),
|
240 |
+
length_penalty: gr.Slider(visible=False),
|
241 |
+
top_p_box: gr.Checkbox(visible = True, value=False),
|
242 |
+
top_k_box: gr.Checkbox(visible = True, value=False),
|
243 |
+
penalty_alpha: gr.Slider (visible=False)
|
244 |
+
}
|
245 |
+
if chosen_strategy == "Diversity Beam Search":
|
246 |
+
|
247 |
+
return {n_beams: gr.Slider(visible=True),
|
248 |
+
beam_groups: gr.Dropdown(visible=True),
|
249 |
+
diversity_penalty: gr.Slider(visible=True),
|
250 |
+
num_return_sequences: gr.Slider(visible=True),
|
251 |
+
length_penalty: gr.Slider(visible=True),
|
252 |
+
beam_temperature: gr.Checkbox(visible=False),
|
253 |
+
early_stopping: gr.Checkbox(visible=True),
|
254 |
+
temperature: gr.Slider (visible=False),
|
255 |
+
top_k: gr.Slider(visible=False),
|
256 |
+
top_p: gr.Slider(visible=False),
|
257 |
+
top_k_box: gr.Checkbox(visible = False),
|
258 |
+
top_p_box: gr.Checkbox(visible = False),
|
259 |
+
penalty_alpha: gr.Slider (visible=False),
|
260 |
+
}
|
261 |
+
|
262 |
+
if chosen_strategy == "Contrastive":
|
263 |
+
if top_k_box:
|
264 |
+
{top_k: gr.Slider(visible = True)}
|
265 |
+
|
266 |
+
return {
|
267 |
+
temperature: gr.Slider (visible=True),
|
268 |
+
penalty_alpha: gr.Slider (visible=True),
|
269 |
+
top_p: gr.Slider(visible=False),
|
270 |
+
#top_k: gr.Slider(visible = True) if top_k_box
|
271 |
+
#top_k: gr.Slider(visible=False),
|
272 |
+
n_beams: gr.Slider(visible=False),
|
273 |
+
beam_groups: gr.Dropdown(visible=False),
|
274 |
+
diversity_penalty: gr.Slider(visible=False),
|
275 |
+
num_return_sequences: gr.Slider(visible=False),
|
276 |
+
beam_temperature: gr.Checkbox(visible=False),
|
277 |
+
early_stopping: gr.Checkbox(visible=False),
|
278 |
+
length_penalty: gr.Slider(visible=False),
|
279 |
+
top_p_box: gr.Checkbox(visible = False),
|
280 |
+
top_k_box: gr.Checkbox(visible = True)
|
281 |
+
}
|
282 |
+
|
283 |
+
def clear():
|
284 |
+
print ("")
|
285 |
+
|
286 |
+
|
287 |
+
#------------------MAIN BLOCKS DISPLAY---------------
|
288 |
+
|
289 |
+
with gr.Blocks() as demo:
|
290 |
+
|
291 |
+
No_beam_group_list = [2]
|
292 |
+
text = gr.Textbox(
|
293 |
+
label="Prompt",
|
294 |
+
value="It's a rainy day today",
|
295 |
+
)
|
296 |
+
|
297 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
298 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id, cache_dir=cache_dir).to(torch_device)
|
299 |
+
|
300 |
+
|
301 |
+
with gr.Row():
|
302 |
+
|
303 |
+
with gr.Column (scale=0, min_width=200) as Models_Strategy:
|
304 |
+
|
305 |
+
model_selected = gr.Radio (["gpt2", "Gemma 2"], label="ML Model", value="gpt2")
|
306 |
+
strategy_selected = gr.Radio (["Sampling", "Beam Search", "Diversity Beam Search","Contrastive"], label="Search strategy", value = "Sampling", interactive=True)
|
307 |
+
|
308 |
+
|
309 |
+
with gr.Column (scale=0, min_width=250) as Beam_Params:
|
310 |
+
n_steps = gr.Slider(
|
311 |
+
label="Number of steps/tokens", minimum=1, maximum=100, step=1, value=20
|
312 |
+
)
|
313 |
+
n_beams = gr.Slider(
|
314 |
+
label="Number of beams", minimum=2, maximum=100, step=1, value=4, visible=False
|
315 |
+
)
|
316 |
+
|
317 |
+
#----------------Dropdown-----------------
|
318 |
+
|
319 |
+
beam_groups = gr.Dropdown(No_beam_group_list, value=2, label="Beam groups", info="Divide beams into equal groups", visible=False
|
320 |
+
)
|
321 |
+
|
322 |
+
diversity_penalty = gr.Slider(
|
323 |
+
label="Group diversity penalty", minimum=0.1, maximum=2, step=0.1, value=0.8, visible=False
|
324 |
+
)
|
325 |
+
|
326 |
+
num_return_sequences = gr.Slider(
|
327 |
+
label="Number of return sequences", minimum=1, maximum=3, step=1, value=2, visible=False
|
328 |
+
)
|
329 |
+
temperature = gr.Slider(
|
330 |
+
label="Temperature", minimum=0.1, maximum=3, step=0.1, value=0.6, visible = True
|
331 |
+
)
|
332 |
+
|
333 |
+
top_k = gr.Slider(
|
334 |
+
label="Top_K", minimum=1, maximum=50, step=1, value=5, visible = False
|
335 |
+
)
|
336 |
+
top_p = gr.Slider(
|
337 |
+
label="Top_P", minimum=0.1, maximum=3, step=0.1, value=0.3, visible = False
|
338 |
+
)
|
339 |
+
|
340 |
+
penalty_alpha = gr.Slider(
|
341 |
+
label="Contrastive penalty α", minimum=0.1, maximum=2, step=0.1, value=0.6, visible=False
|
342 |
+
)
|
343 |
+
|
344 |
+
top_p_box = gr.Checkbox(label="Top P", info="Turn on Top P", visible = True, interactive=True)
|
345 |
+
top_k_box = gr.Checkbox(label="Top K", info="Turn on Top K", visible = True, interactive=True)
|
346 |
+
|
347 |
+
|
348 |
+
early_stopping = gr.Checkbox(label="Early stopping", info="Stop with heuristically chosen good result", visible = False, interactive=True)
|
349 |
+
beam_temperature = gr.Checkbox(label="Beam Temperature", info="Turn on sampling", visible = False, interactive=True)
|
350 |
+
|
351 |
+
with gr.Column(scale=0, min_width=200):
|
352 |
+
|
353 |
+
length_penalty = gr.Slider(
|
354 |
+
label="Length penalty", minimum=-3, maximum=3, step=0.5, value=0, info="'+' more, '-' less no. of words", visible = False, interactive=True
|
355 |
+
)
|
356 |
+
|
357 |
+
no_repeat_ngram_size = gr.Slider(
|
358 |
+
label="No repeat n-gram phrase size", minimum=0, maximum=8, step=1, value=4, info="Not to repeat 'n' words"
|
359 |
+
)
|
360 |
+
repetition_penalty = gr.Slider(
|
361 |
+
label="Repetition penalty", minimum=0, maximum=3, step=1, value=float(0), info="Prior context based penalty for unique text"
|
362 |
+
)
|
363 |
+
|
364 |
+
|
365 |
+
|
366 |
+
#----------ON SELECTING/CHANGING: RETURN SEEQUENCES/NO OF BEAMS/BEAM GROUPS/TEMPERATURE--------
|
367 |
+
|
368 |
+
model_selected.change(
|
369 |
+
fn=load_model, inputs=[model_selected], outputs=[]
|
370 |
+
)
|
371 |
+
|
372 |
+
#num_return_sequences.change(
|
373 |
+
#fn=change_num_return_sequences, inputs=[n_beams,num_return_sequences], outputs=num_return_sequences
|
374 |
+
#)
|
375 |
+
|
376 |
+
n_beams.change(
|
377 |
+
fn=popualate_beam_groups, inputs=[n_beams], outputs=[beam_groups,num_return_sequences]
|
378 |
+
)
|
379 |
+
|
380 |
+
strategy_selected.change(fn=select_strategy, inputs=strategy_selected, outputs=[n_beams,beam_groups,length_penalty,diversity_penalty,num_return_sequences,temperature,early_stopping,beam_temperature,penalty_alpha,top_p,top_k,top_p_box,top_k_box])
|
381 |
+
|
382 |
+
beam_temperature.change (fn=beam_temp_switch, inputs=beam_temperature, outputs=temperature)
|
383 |
+
|
384 |
+
top_p_box.change (fn=top_p_switch, inputs=top_p_box, outputs=top_p)
|
385 |
+
|
386 |
+
top_k_box.change (fn=top_k_switch, inputs=top_k_box, outputs=top_k)
|
387 |
+
|
388 |
+
|
389 |
+
#-------------GENERATE BUTTON-------------------
|
390 |
+
|
391 |
+
button = gr.Button("Generate")
|
392 |
+
out_markdown = gr.Textbox()
|
393 |
+
|
394 |
+
|
395 |
+
button.click(
|
396 |
+
fn = generate,
|
397 |
+
inputs=[text, n_steps, n_beams, beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected],
|
398 |
+
outputs=[out_markdown]
|
399 |
+
)
|
400 |
+
|
401 |
+
cleared = gr.Button ("Clear")
|
402 |
+
cleared.click (fn=clear, inputs=[], outputs=[out_markdown])
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
demo.launch()
|
407 |
+
|