import os import gradio as gr from groq import Groq import whisper from gtts import gTTS import tempfile # Set up Groq API key os.environ['GROQ_API_KEY'] = 'GROQ_API-KEY' groq_client = Groq(api_key=os.environ.get('GROQ_API_KEY')) # Load Whisper model whisper_model = whisper.load_model("base") def process_audio(audio_file): # Transcribe audio using Whisper result = whisper_model.transcribe(audio_file) user_text = result['text'] # Generate response using Llama 8b model with Groq API chat_completion = groq_client.chat.completions.create( messages=[ { "role": "user", "content": user_text, } ], model="llama3-8b-8192", ) response_text = chat_completion.choices[0].message.content # Convert response text to speech using gTTS tts = gTTS(text=response_text, lang='en') audio_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') tts.save(audio_file.name) return response_text, audio_file.name # Create Gradio interface iface = gr.Interface( fn=process_audio, inputs=gr.Audio(type="filepath"), outputs=[gr.Textbox(label="Response"), gr.Audio(label="Response Audio")], live=True ) iface.launch()