File size: 1,218 Bytes
be95b82
 
 
ba37341
be95b82
 
ba37341
 
be95b82
 
ba37341
db16d10
ba37341
5f6c6c9
ba37341
dde29c3
ba37341
be95b82
 
44b7d5d
ba37341
44b7d5d
 
 
ba37341
 
44b7d5d
8371819
 
 
44b7d5d
ba37341
 
be95b82
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from transformers import pipeline
import gradio as gr

# text summarizer
summarizer = pipeline("summarization", model = "facebook/bart-large-cnn")

def get_summary(text):
    output = summarizer(text)
    return output[0]["summary_text"]

# named entity recognition
ner_model = pipeline("ner", model = "dslim/bert-large-NER")

def get_ner(text):
    output = ner_model(text)
    return {"text":text, "entities":output}

demo = gr.Blocks()
with demo:
    gr.Markdown("# Try out some cool tasks!")
    with gr.Tab("Text Summarizer"):
        sum_input = [gr.Textbox(label="Text to Summarize", placeholder="Enter text to summarize...", lines=4)]
        sum_output = [gr.Textbox(label="Summarized Text")]
        sum_btn = gr.Button("Summarize text")
        sum_btn.click(get_summary, sum_input, sum_output)
    with gr.Tab("Named Entity Recognition"):
        ner_input = [gr.Textbox(label="Text to find Entities", placeholder = "Enter text...", lines = 4)]
        # ner_output = gr.Textbox()
        ner_output = [gr.HighlightedText(label="Text with entities")]
        allow_flagging = "never"
        ner_btn = gr.Button("Generate entities")
        ner_btn.click(get_ner, ner_input, ner_output)
    

demo.launch()