Spaces:
Running
Running
from transformers import pipeline | |
import gradio as gr | |
# text summarizer | |
summarizer = pipeline("summarization", model = "facebook/bart-large-cnn") | |
def get_summary(text): | |
output = summarizer(text) | |
return output[0]["summary_text"] | |
# named entity recognition | |
ner_model = pipleine("ner", model = "dslim/bert-large-NER") | |
def gen_ner(text): | |
output = ner_model(text) | |
return output | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("Try out multiple NLP tasks!") | |
with gr.Tab("Text Summarizer"): | |
sum_input = gr.Textbox(placeholder="Enter text to summarize...", lines=4) | |
sum_output = gr.Textbox() | |
sum_btn = gr.Button("Summarize") | |
sum_btn.click(get_summary, sum_input, sum_output) | |
with gr.Tab("Named Entity Recognition"): | |
ner_input = gr.Textbox(placeholder = "Enter text...", lines = 4) | |
ner_output = gr.Textbox() | |
ner_btn = gr.Button("Get named entities") | |
ner_btn.click(get_ner, ner_input, ner_output) | |
demo.launch() |