from transformers import pipeline import gradio as gr # 1. text summarizer summarizer = pipeline("summarization", model = "facebook/bart-large-cnn") def get_summary(text): output = summarizer(text) return output[0]["summary_text"] # 2. named entity recognition ner_model = pipeline("ner", model = "dslim/bert-large-NER") def get_ner(text): output = ner_model(text) return {"text":text, "entities":output} # 3. Image Captioning caption_model = pipeline("image-to-text", model = "Salesforce/blip-image-captioning-base") # processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") def get_caption(img): output = caption_model(img) return output[0]["generated_text"] demo = gr.Blocks() with demo: gr.Markdown("# Try out some cool tasks!") with gr.Tab("Text Summarization"): sum_input = [gr.Textbox(label="Text to Summarize", placeholder="Enter text to summarize...", lines=4)] sum_btn = gr.Button("Summarize text") sum_output = [gr.Textbox(label="Summarized Text")] sum_btn.click(get_summary, sum_input, sum_output) with gr.Tab("Named Entity Recognition"): ner_input = [gr.Textbox(label="Text to find Entities", placeholder = "Enter text...", lines = 4)] # ner_output = gr.Textbox() ner_output = [gr.HighlightedText(label="Text with entities")] ner_btn = gr.Button("Generate entities") # allow_flagging = "never" ner_btn.click(get_ner, ner_input, ner_output) with gr.Tab("Image Captioning"): cap_input = [gr.Image(label="Upload Image", type="pil")] cap_btn = gr.Button("Generate Caption") cap_output = [gr.Textbox(label="Caption")] cap_btn.click(get_caption, cap_input, cap_output) demo.launch()