from transformers import pipeline import gradio as gr # text summarizer summarizer = pipeline("summarization", model = "facebook/bart-large-cnn") def get_summary(text): output = summarizer(text) return output[0]["summary_text"] # named entity recognition ner_model = pipleine("ner", model = "dslim/bert-large-NER") def gen_ner(text): output = ner_model(text) return output demo = gr.Blocks() with demo: gr.Markdown("Try out multiple NLP tasks!") with gr.Tab("Text Summarizer"): sum_input = gr.Textbox(placeholder="Enter text to summarize...", lines=4) sum_output = gr.Textbox() sum_btn = gr.Button("Summarize") sum_btn.click(get_summary, sum_input, sum_output) with gr.Tab("Named Entity Recognition"): ner_input = gr.Textbox(placeholder = "Enter text...", lines = 4) ner_output = gr.Textbox() ner_btn = gr.Button("Get named entities") ner_btn.click(get_ner, ner_input, ner_output) demo.launch()