Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
|
4 |
+
# Load your model
|
5 |
+
model_checkpoint = "AnasHXH/Ros_model"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
8 |
+
|
9 |
+
def generate_command(input_text):
|
10 |
+
# Tokenize text and convert to model input format
|
11 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
12 |
+
# Generate output from the model
|
13 |
+
outputs = model.generate(inputs["input_ids"])
|
14 |
+
# Decode the generated tokens to text
|
15 |
+
command = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
16 |
+
return command
|
17 |
+
|
18 |
+
# Define your Gradio interface
|
19 |
+
iface = gr.Interface(
|
20 |
+
fn=generate_command, # the function to wrap
|
21 |
+
inputs="text", # the input data type
|
22 |
+
outputs="text", # the output data type
|
23 |
+
title="Robot Command Generator",
|
24 |
+
description="Type in English to get the robot command"
|
25 |
+
)
|
26 |
+
|
27 |
+
# Run the Gradio app
|
28 |
+
iface.launch()
|