Spaces:
Sleeping
Sleeping
upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Define model classes (same as before)
|
9 |
+
class SimpleGate(nn.Module):
|
10 |
+
def forward(self, x):
|
11 |
+
x1, x2 = x.chunk(2, dim=-1)
|
12 |
+
return x1 * x2
|
13 |
+
|
14 |
+
class ASPP(nn.Module):
|
15 |
+
def __init__(self, in_channels, out_channels):
|
16 |
+
super(ASPP, self).__init__()
|
17 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
18 |
+
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, padding=6, dilation=6, bias=False)
|
19 |
+
self.conv3 = nn.Conv2d(in_channels, out_channels, 3, padding=12, dilation=12, bias=False)
|
20 |
+
self.conv4 = nn.Conv2d(in_channels, out_channels, 3, padding=18, dilation=18, bias=False)
|
21 |
+
self.pool = nn.AdaptiveAvgPool2d(1)
|
22 |
+
self.conv5 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
23 |
+
self.conv_out = nn.Conv2d(out_channels * 5, out_channels, 1, bias=False)
|
24 |
+
self.norm = nn.LayerNorm(out_channels)
|
25 |
+
self.act = nn.SiLU()
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
size = x.shape[-2:]
|
29 |
+
feat1 = self.conv1(x)
|
30 |
+
feat2 = self.conv2(x)
|
31 |
+
feat3 = self.conv3(x)
|
32 |
+
feat4 = self.conv4(x)
|
33 |
+
feat5 = F.interpolate(self.conv5(self.pool(x)), size=size, mode='bilinear', align_corners=False)
|
34 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
35 |
+
out = self.conv_out(out)
|
36 |
+
out = out.permute(0, 2, 3, 1) # Change to (B, H, W, C)
|
37 |
+
out = self.norm(out)
|
38 |
+
out = out.permute(0, 3, 1, 2) # Change back to (B, C, H, W)
|
39 |
+
return self.act(out)
|
40 |
+
|
41 |
+
class ChannelwiseSelfAttention(nn.Module):
|
42 |
+
def __init__(self, dim):
|
43 |
+
super(ChannelwiseSelfAttention, self).__init__()
|
44 |
+
self.dim = dim
|
45 |
+
self.query_conv = nn.Linear(dim, dim)
|
46 |
+
self.key_conv = nn.Linear(dim, dim)
|
47 |
+
self.value_conv = nn.Linear(dim, dim)
|
48 |
+
self.scale = dim ** -0.5
|
49 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, 1, 1, dim))
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
# x: (B, H, W, C)
|
53 |
+
B, H, W, C = x.shape
|
54 |
+
x = x + self.pos_embedding # Positional embedding
|
55 |
+
x = x.view(B, H * W, C) # Reshape to (B, N, C)
|
56 |
+
|
57 |
+
# Linear projections
|
58 |
+
q = self.query_conv(x) # (B, N, C)
|
59 |
+
k = self.key_conv(x) # (B, N, C)
|
60 |
+
v = self.value_conv(x) # (B, N, C)
|
61 |
+
|
62 |
+
# Compute attention over channels at each spatial location
|
63 |
+
q = q.view(B, H * W, 1, C) # (B, N, 1, C)
|
64 |
+
k = k.view(B, H * W, C, 1) # (B, N, C, 1)
|
65 |
+
attn = torch.matmul(q, k).squeeze(2) * self.scale # (B, N, C)
|
66 |
+
attn = attn.softmax(dim=-1) # Softmax over channels
|
67 |
+
|
68 |
+
# Apply attention to values
|
69 |
+
out = attn * v # Element-wise multiplication
|
70 |
+
out = out.view(B, H, W, C) # Reshape back to (B, H, W, C)
|
71 |
+
return out
|
72 |
+
|
73 |
+
class EnhancedSS2D(nn.Module):
|
74 |
+
def __init__(self, d_model, d_state=16, d_conv=3, expand=2., dt_rank=64, dt_min=0.001, dt_max=0.1, dt_init="random", dt_scale=1.0):
|
75 |
+
super().__init__()
|
76 |
+
self.d_model = d_model
|
77 |
+
self.d_state = d_state
|
78 |
+
self.d_conv = d_conv
|
79 |
+
self.expand = expand
|
80 |
+
self.d_inner = int(self.expand * self.d_model) # self.d_inner = 2 * d_model
|
81 |
+
self.dt_rank = dt_rank
|
82 |
+
|
83 |
+
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2)
|
84 |
+
self.conv2d = nn.Conv2d(self.d_inner, self.d_inner, kernel_size=d_conv, padding=(d_conv - 1) // 2, groups=self.d_inner)
|
85 |
+
self.act = nn.SiLU()
|
86 |
+
|
87 |
+
self.x_proj = nn.Linear(self.d_inner, self.d_inner * 2)
|
88 |
+
self.dt_proj = nn.Linear(self.d_inner, self.d_inner)
|
89 |
+
|
90 |
+
self.out_norm = nn.LayerNorm(self.d_inner)
|
91 |
+
|
92 |
+
# Update here
|
93 |
+
self.out_proj = nn.Linear(self.d_inner // 2, d_model)
|
94 |
+
|
95 |
+
# New components
|
96 |
+
self.simple_gate = SimpleGate()
|
97 |
+
self.aspp = ASPP(d_model, d_model)
|
98 |
+
self.channel_attn = ChannelwiseSelfAttention(d_model)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
B, H, W, C = x.shape
|
102 |
+
|
103 |
+
# Apply ASPP
|
104 |
+
x_aspp = self.aspp(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
|
105 |
+
|
106 |
+
# Original SS2D operations
|
107 |
+
x = self.in_proj(x)
|
108 |
+
x, z = x.chunk(2, dim=-1)
|
109 |
+
x = x.permute(0, 3, 1, 2)
|
110 |
+
x = self.conv2d(x)
|
111 |
+
x = x.permute(0, 2, 3, 1)
|
112 |
+
x = self.act(x)
|
113 |
+
y = self.selective_scan(x)
|
114 |
+
y = self.out_norm(y)
|
115 |
+
y = y * F.silu(z)
|
116 |
+
|
117 |
+
# Apply SimpleGate
|
118 |
+
y = self.simple_gate(y)
|
119 |
+
|
120 |
+
# Apply Channel-wise Self-Attention
|
121 |
+
y = self.channel_attn(y)
|
122 |
+
|
123 |
+
# Combine with ASPP output
|
124 |
+
y = y + x_aspp
|
125 |
+
|
126 |
+
out = self.out_proj(y)
|
127 |
+
return out
|
128 |
+
|
129 |
+
def selective_scan(self, x):
|
130 |
+
B, H, W, C = x.shape
|
131 |
+
x_flat = x.reshape(B, H*W, C)
|
132 |
+
x_dbl = self.x_proj(x_flat)
|
133 |
+
x_dbl = x_dbl.view(B, H, W, -1)
|
134 |
+
dt, x_proj = x_dbl.chunk(2, dim=-1)
|
135 |
+
dt = F.softplus(self.dt_proj(dt))
|
136 |
+
y = x * torch.sigmoid(dt) + x_proj * torch.tanh(x_proj)
|
137 |
+
return y
|
138 |
+
|
139 |
+
class EnhancedVSSBlock(nn.Module):
|
140 |
+
def __init__(self, d_model, d_state=16):
|
141 |
+
super().__init__()
|
142 |
+
self.ln_1 = nn.LayerNorm(d_model)
|
143 |
+
self.ss2d = EnhancedSS2D(d_model, d_state)
|
144 |
+
self.ln_2 = nn.LayerNorm(d_model)
|
145 |
+
self.conv_blk = nn.Sequential(
|
146 |
+
nn.Conv2d(d_model, d_model, kernel_size=3, padding=1),
|
147 |
+
nn.ReLU(inplace=True),
|
148 |
+
nn.Conv2d(d_model, d_model, kernel_size=3, padding=1)
|
149 |
+
)
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
residual = x
|
153 |
+
x = self.ln_1(x)
|
154 |
+
x = residual + self.ss2d(x)
|
155 |
+
residual = x
|
156 |
+
x = self.ln_2(x)
|
157 |
+
x = x.permute(0, 3, 1, 2)
|
158 |
+
x = self.conv_blk(x)
|
159 |
+
x = x.permute(0, 2, 3, 1)
|
160 |
+
x = residual + x
|
161 |
+
return x
|
162 |
+
|
163 |
+
class MambaIRShadowRemoval(nn.Module):
|
164 |
+
def __init__(self, img_channel=3, width=32, middle_blk_num=1, enc_blk_nums=[1, 1, 1, 1], dec_blk_nums=[1, 1, 1, 1], d_state=64):
|
165 |
+
super().__init__()
|
166 |
+
self.intro = nn.Conv2d(img_channel, width, kernel_size=3, padding=1, stride=1, groups=1, bias=True)
|
167 |
+
self.ending = nn.Conv2d(width, img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True)
|
168 |
+
|
169 |
+
self.encoders = nn.ModuleList()
|
170 |
+
self.decoders = nn.ModuleList()
|
171 |
+
self.middle_blks = nn.ModuleList()
|
172 |
+
self.ups = nn.ModuleList()
|
173 |
+
self.downs = nn.ModuleList()
|
174 |
+
|
175 |
+
chan = width
|
176 |
+
for num in enc_blk_nums:
|
177 |
+
self.encoders.append(
|
178 |
+
nn.Sequential(*[EnhancedVSSBlock(chan, d_state) for _ in range(num)])
|
179 |
+
)
|
180 |
+
self.downs.append(nn.Conv2d(chan, 2*chan, 2, 2))
|
181 |
+
chan = chan * 2
|
182 |
+
|
183 |
+
self.middle_blks = nn.Sequential(
|
184 |
+
*[EnhancedVSSBlock(chan, d_state) for _ in range(middle_blk_num)]
|
185 |
+
)
|
186 |
+
|
187 |
+
for num in dec_blk_nums:
|
188 |
+
self.ups.append(nn.Sequential(
|
189 |
+
nn.Conv2d(chan, chan * 2, 1, bias=False),
|
190 |
+
nn.PixelShuffle(2)
|
191 |
+
))
|
192 |
+
chan = chan // 2
|
193 |
+
self.decoders.append(
|
194 |
+
nn.Sequential(*[EnhancedVSSBlock(chan, d_state) for _ in range(num)])
|
195 |
+
)
|
196 |
+
|
197 |
+
self.padder_size = 2 ** len(self.encoders)
|
198 |
+
|
199 |
+
def forward(self, inp):
|
200 |
+
B, C, H, W = inp.shape
|
201 |
+
inp = self.check_image_size(inp)
|
202 |
+
x = self.intro(inp)
|
203 |
+
x = x.permute(0, 2, 3, 1)
|
204 |
+
|
205 |
+
encs = []
|
206 |
+
for encoder, down in zip(self.encoders, self.downs):
|
207 |
+
x = encoder(x)
|
208 |
+
encs.append(x)
|
209 |
+
x = x.permute(0, 3, 1, 2)
|
210 |
+
x = down(x)
|
211 |
+
x = x.permute(0, 2, 3, 1)
|
212 |
+
|
213 |
+
x = self.middle_blks(x)
|
214 |
+
|
215 |
+
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
|
216 |
+
x = x.permute(0, 3, 1, 2)
|
217 |
+
x = up(x)
|
218 |
+
x = x.permute(0, 2, 3, 1)
|
219 |
+
x = x + enc_skip
|
220 |
+
x = decoder(x)
|
221 |
+
|
222 |
+
x = x.permute(0, 3, 1, 2)
|
223 |
+
x = self.ending(x)
|
224 |
+
x = x + inp
|
225 |
+
|
226 |
+
return x[:, :, :H, :W]
|
227 |
+
|
228 |
+
def check_image_size(self, x):
|
229 |
+
_, _, h, w = x.size()
|
230 |
+
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
|
231 |
+
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
|
232 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
|
233 |
+
return x
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
# Load the model with weights
|
238 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
239 |
+
model = MambaIRShadowRemoval(img_channel=3, width=32, middle_blk_num=1, enc_blk_nums=[1, 1, 1, 1], dec_blk_nums=[1, 1, 1, 1], d_state=64)
|
240 |
+
model.load_state_dict(torch.load("shadow_removal_model.pth", map_location=device))
|
241 |
+
model.to(device)
|
242 |
+
model.eval()
|
243 |
+
|
244 |
+
# Define the Gradio function
|
245 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
246 |
+
|
247 |
+
def remove_shadow(image):
|
248 |
+
input_tensor = transform(image).unsqueeze(0).to(device)
|
249 |
+
with torch.no_grad():
|
250 |
+
output_tensor = model(input_tensor)
|
251 |
+
output_image = transforms.ToPILImage()(output_tensor.squeeze(0).cpu())
|
252 |
+
return output_image
|
253 |
+
|
254 |
+
# Set up Gradio interface
|
255 |
+
iface = gr.Interface(
|
256 |
+
fn=remove_shadow,
|
257 |
+
inputs=gr.Image(type="pil"),
|
258 |
+
outputs=gr.Image(type="pil"),
|
259 |
+
title="Shadow Removal Model",
|
260 |
+
description="Upload an image to remove shadows using the trained model."
|
261 |
+
)
|
262 |
+
|
263 |
+
iface.launch()
|