#!/usr/bin/env python from __future__ import annotations import os from subprocess import getoutput import gradio as gr import torch from app_inference import create_inference_demo from app_training import create_training_demo from app_upload import create_upload_demo from inference import InferencePipeline from trainer import Trainer TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/) UI' ORIGINAL_SPACE_ID = 'Tune-A-Video-library/Tune-A-Video-Training-UI' SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID) GPU_DATA = getoutput('nvidia-smi') SHARED_UI_WARNING = f'''## Attention - Training doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU. <center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center> ''' if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID: SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>' else: SETTINGS = 'Settings' INVALID_GPU_WARNING = f'''## Attention - the specified GPU is invalid. Training may not work. Make sure you have selected a `T4 GPU` for this task.''' CUDA_NOT_AVAILABLE_WARNING = f'''## Attention - Running on CPU. <center> You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces. You can use "T4 small/medium" to run this demo. </center> ''' HF_TOKEN_NOT_SPECIFIED_WARNING = f'''The environment variable `HF_TOKEN` is not specified. Feel free to specify your Hugging Face token with write permission if you don't want to manually provide it for every run. <center> You can check and create your Hugging Face tokens <a href="https://huggingface.co/settings/tokens" target="_blank">here</a>. You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab. </center> ''' HF_TOKEN = os.getenv('HF_TOKEN') def show_warning(warning_text: str) -> gr.Blocks: with gr.Blocks() as demo: with gr.Box(): gr.Markdown(warning_text) return demo pipe = InferencePipeline(HF_TOKEN) trainer = Trainer(HF_TOKEN) with gr.Blocks(css='style.css') as demo: if SPACE_ID == ORIGINAL_SPACE_ID: show_warning(SHARED_UI_WARNING) elif not torch.cuda.is_available(): show_warning(CUDA_NOT_AVAILABLE_WARNING) elif (not 'T4' in GPU_DATA): show_warning(INVALID_GPU_WARNING) gr.Markdown(TITLE) with gr.Tabs(): with gr.TabItem('Train'): create_training_demo(trainer, pipe) with gr.TabItem('Run'): create_inference_demo(pipe, HF_TOKEN) with gr.TabItem('Upload'): gr.Markdown(''' - You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed. ''') create_upload_demo(HF_TOKEN) if not HF_TOKEN: show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING) demo.queue(max_size=1).launch(share=False)