#!/usr/bin/env python
from __future__ import annotations
import os
from subprocess import getoutput
import gradio as gr
import torch
from app_inference import create_inference_demo
from app_training import create_training_demo
from app_upload import create_upload_demo
from inference import InferencePipeline
from trainer import Trainer
TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/) UI'
ORIGINAL_SPACE_ID = 'Tune-A-Video-library/Tune-A-Video-Training-UI'
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
GPU_DATA = getoutput('nvidia-smi')
SHARED_UI_WARNING = f'''## Attention - Training doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
'''
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
SETTINGS = f'Settings'
else:
SETTINGS = 'Settings'
INVALID_GPU_WARNING = f'''## Attention - the specified GPU is invalid. Training may not work. Make sure you have selected a `T4 GPU` for this task.'''
CUDA_NOT_AVAILABLE_WARNING = f'''## Attention - Running on CPU.
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
You can use "T4 small/medium" to run this demo.
'''
HF_TOKEN_NOT_SPECIFIED_WARNING = f'''The environment variable `HF_TOKEN` is not specified. Feel free to specify your Hugging Face token with write permission if you don't want to manually provide it for every run.
You can check and create your Hugging Face tokens here.
You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab.
'''
HF_TOKEN = os.getenv('HF_TOKEN')
def show_warning(warning_text: str) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Box():
gr.Markdown(warning_text)
return demo
pipe = InferencePipeline(HF_TOKEN)
trainer = Trainer(HF_TOKEN)
with gr.Blocks(css='style.css') as demo:
if SPACE_ID == ORIGINAL_SPACE_ID:
show_warning(SHARED_UI_WARNING)
elif not torch.cuda.is_available():
show_warning(CUDA_NOT_AVAILABLE_WARNING)
elif (not 'T4' in GPU_DATA):
show_warning(INVALID_GPU_WARNING)
gr.Markdown(TITLE)
with gr.Tabs():
with gr.TabItem('Train'):
create_training_demo(trainer, pipe)
with gr.TabItem('Run'):
create_inference_demo(pipe, HF_TOKEN)
with gr.TabItem('Upload'):
gr.Markdown('''
- You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
''')
create_upload_demo(HF_TOKEN)
if not HF_TOKEN:
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
demo.queue(max_size=1).launch(share=False)