RVC_c / train /mel_processing.py
r3gm's picture
Upload 288 files
7bc29af
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
MAX_WAV_VALUE = 32768.0
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
return dynamic_range_compression_torch(magnitudes)
def spectral_de_normalize_torch(magnitudes):
return dynamic_range_decompression_torch(magnitudes)
# Reusable banks
mel_basis = {}
hann_window = {}
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram.
Args:
y :: (B, T) - Audio waveforms
n_fft
sampling_rate
hop_size
win_size
center
Returns:
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
"""
# Validation
if torch.min(y) < -1.07:
print("min value is ", torch.min(y))
if torch.max(y) > 1.07:
print("max value is ", torch.max(y))
# Window - Cache if needed
global hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
wnsize_dtype_device = str(win_size) + "_" + dtype_device
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
dtype=y.dtype, device=y.device
)
# Padding
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
# Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[wnsize_dtype_device],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
# Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
# MelBasis - Cache if needed
global mel_basis
dtype_device = str(spec.dtype) + "_" + str(spec.device)
fmax_dtype_device = str(fmax) + "_" + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
dtype=spec.dtype, device=spec.device
)
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
melspec = spectral_normalize_torch(melspec)
return melspec
def mel_spectrogram_torch(
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
):
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
Args:
y :: (B, T) - Waveforms
Returns:
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
"""
# Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
return melspec