Spaces:
Runtime error
Runtime error
File size: 1,092 Bytes
4ecc856 fbb5992 4ecc856 8b7cda3 4ecc856 8b7cda3 4ecc856 fbb5992 ff48a9b fbb5992 77684da 2a9e83f 4ecc856 70485e0 14735ff 4ecc856 29c50fd 4ecc856 29c50fd ca9a717 4ecc856 8b7cda3 fbb5992 4ecc856 29c50fd 4ecc856 29c50fd 4ecc856 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import torch
import fastapi
import numpy as np
from PIL import Image
class TorchTensor(torch.Tensor):
pass
class Prediction:
prediction: TorchTensor
app = fastapi.FastAPI(docs_url="/")
# model = torch.load("model67.bin", map_location='cpu')
model = torch.load("best_model.pth", map_location='cpu')
print(model)
# Define a function to preprocess the input image
def preprocess_input(input: fastapi.UploadFile):
image = Image.open(input.file)
image = image.resize((224, 224))
input = np.array(image)
input = torch.from_numpy(input).float()
input = input.unsqueeze(0)
return input
# Define an endpoint to make predictions
@app.post("/predict")
async def predict_endpoint(input:fastapi.UploadFile):
"""Make a prediction on an image uploaded by the user."""
# Preprocess the input image
input = preprocess_input(input)
# Make a prediction
prediction = model(input)
# Get the predicted class
predicted_class = prediction.argmax(1).item()
# Return the predicted class in JSON format
return {"prediction": predicted_class}
|