import torch import fastapi import numpy as np from PIL import Image class TorchTensor(torch.Tensor): pass class Prediction: prediction: TorchTensor app = fastapi.FastAPI(docs_url="/") from transformers import ViTForImageClassification # Define the number of classes in your custom dataset num_classes = 20 # Initialize the ViTForImageClassification model model = ViTForImageClassification.from_pretrained( 'google/vit-base-patch16-224-in21k', num_labels=num_classes # Specify the number of classes ) model.load_state_dict(torch.load('best_model.pth', map_location='cpu')) # Define a function to preprocess the input image def preprocess_input(input: fastapi.UploadFile): image = Image.open(input.file) image = image.resize((224, 224)).convert("RGB") input = np.array(image) input = np.transpose(input, (2, 0, 1)) input = torch.from_numpy(input).float() input = input.unsqueeze(0) return input # Define an endpoint to make predictions @app.post("/predict") async def predict_endpoint(input:fastapi.UploadFile): """Make a prediction on an image uploaded by the user.""" # Preprocess the input image input = preprocess_input(input) # Make a prediction prediction = model(input) predicted_class = prediction.argmax(1).item() # Return the predicted class in JSON format return {"prediction": predicted_class}