import torch import fastapi import numpy as np from PIL import Image class TorchTensor(torch.Tensor): pass class Prediction: prediction: TorchTensor app = fastapi.FastAPI(docs_url="/") from transformers import ViTForImageClassification # Define the number of classes in your custom dataset num_classes = 20 # Initialize the ViTForImageClassification model model = ViTForImageClassification.from_pretrained( 'google/vit-base-patch16-224-in21k', num_labels=num_classes # Specify the number of classes ) class_names = [ "Acral Lick Dermatitis", "Acute moist dermatitis", "Canine atopic dermatitis", "Cherry Eye", "Ear infections", "External Parasites", "Folliculitis", "Healthy", "Leishmaniasis", "Lupus", "Nuclear sclerosis", "Otitis externa", "Pruritus", "Pyoderma", "Rabies", "Ringworm", "Sarcoptic Mange", "Sebaceous adenitis", "Seborrhea", "Skin tumor" ] model.load_state_dict(torch.load('best_model.pth', map_location='cpu')) # Define a function to preprocess the input image def preprocess_input(input: str): image_data = base64.b64decode(input) image = Image.open(io.BytesIO(image_data)) image = image.resize((224, 224)).convert("RGB") input = np.array(image) input = np.transpose(input, (2, 0, 1)) input = torch.from_numpy(input).float() input = input.unsqueeze(0) return input # Define an endpoint to make predictions @app.post("/predict") async def predict_endpoint(input:str): """Make a prediction on an image uploaded by the user.""" # Preprocess the input image input = preprocess_input(input) # Make a prediction prediction = model(input) logits = prediction.logits num_top_predictions = 3 top_predictions = torch.topk(logits, k=num_top_predictions, dim=1) top_indices = top_predictions.indices.squeeze().tolist() top_probabilities = torch.softmax(top_predictions.values, dim=1).squeeze().tolist() # Return the top N class indices and their probabilities in JSON format response_data = [{"class_index": class_names[idx], "probability": prob} for idx, prob in zip(top_indices, top_probabilities)] return {"predictions": response_data}