import pandas as pd import numpy as np import torch import string import re import random import gradio as gr from tqdm import tqdm tqdm().pandas() import nltk from nltk.tokenize.treebank import TreebankWordDetokenizer nltk.download('punkt') # BERT imports from transformers import BertForMaskedLM, BertTokenizer # GPT2 imports from transformers import GPT2LMHeadModel, GPT2Tokenizer # BioBPT from transformers import BioGptForCausalLM, BioGptTokenizer # LLAMA from transformers import LlamaTokenizer, LlamaForCausalLM # FALCON from transformers import AutoTokenizer, AutoModelForCausalLM import mgr_sentences as smgr import mgr_biases as bmgr import mgr_requests as rq_mgr from error_messages import * import contextlib autocast = contextlib.nullcontext import gc # Great article about handing big models - https://huggingface.co/blog/accelerate-large-models def _getModelSafe(model_name, device): model = None tokenizer = None try: model, tokenizer = _getModel(model_name, device) except Exception as err: print(f"Loading Model Error: {err}") print("Cleaning the model...") model = None tokenizer = None torch.cuda.empty_cache() gc.collect() if model == None or tokenizer == None: print("Cleaned, trying reloading....") model, tokenizer = _getModel(model_name, device) return model, tokenizer def _getModel(model_name, device): if "bert" in model_name.lower(): tokenizer = BertTokenizer.from_pretrained(model_name) model = BertForMaskedLM.from_pretrained(model_name) elif "biogpt" in model_name.lower(): tokenizer = BioGptTokenizer.from_pretrained(model_name) model = BioGptForCausalLM.from_pretrained(model_name) elif 'gpt2' in model_name.lower(): tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) elif 'llama' in model_name.lower(): print(f"Getting LLAMA model: {model_name}") tokenizer = LlamaTokenizer.from_pretrained(model_name) model = LlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, ## #use_safetensors=True, ## #offload_folder="offload", #offload_state_dict = True, #device_map='auto' ) elif "falcon" in model_name.lower(): print(f"Getting FALCON model: {model_name}") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, low_cpu_mem_usage=True, ## #use_safetensors=True, ## #offload_folder="offload", #offload_state_dict = True, #device_map='auto' ) #model.tie_weights() if model == None: print("Model is empty!!!") else: model = model.to(device) model.eval() torch.set_grad_enabled(False) return model, tokenizer def makeOrdGrpKey(row): grp_lst = [row['grp_term1'], row['grp_term2']] grp_lst.sort() return f"{grp_lst[0]}/{grp_lst[1]}" def genMissingPairsSpec(bias_spec, test_sentences_df): print("--- GET MISSING BIAS PAIRS ---") g1, g2, a1, a2 = get_words(bias_spec) print("---Sentences---") print(list(test_sentences_df.columns)) test_sentences_df['gr_cmp_key'] = test_sentences_df.progress_apply(makeOrdGrpKey, axis=1) print("---Sentences GRP KEY---") print(list(test_sentences_df.columns)) grp_terms = g1 + g2 att_terms = a1 + a2 grp_cmp_dict = {} for gr1, gr2 in zip(g1, g2): gr_lst = [gr1, gr2] gr_lst.sort() if gr1 not in grp_cmp_dict: grp_cmp_dict[gr1] = [gr2, f"{gr_lst[0]}/{gr_lst[1]}"] if gr2 not in grp_cmp_dict: grp_cmp_dict[gr2] = [gr1, f"{gr_lst[0]}/{gr_lst[1]}"] print("---GRP PAIR KEY---") print(grp_cmp_dict) print("---PERMITTED PAIRS---") permitted_pairs = [] for gr1, gr2 in zip(g1, g2): gr_lst = [gr1, gr2] gr_lst.sort() permitted_pairs.append(f"{gr_lst[0]}/{gr_lst[1]}") if gr1 not in grp_cmp_dict: grp_cmp_dict[gr1] = [gr2, f"{gr_lst[0]}/{gr_lst[1]}"] if gr2 not in grp_cmp_dict: grp_cmp_dict[gr2] = [gr1, f"{gr_lst[0]}/{gr_lst[1]}"] print(f"Permitted pairs: {permitted_pairs}") att_grp_mat = [] for grp in grp_terms[0:]: #list(bias_spec['social_groups'].items())[0][1]: for att in att_terms: sub_df = test_sentences_df.query("att_term==@att and grp_term1==@grp") # or grp_term2==@grp1 grp_att_pair = sub_df.groupby(['gr_cmp_key','att_term'])['att_term'].agg(["count"]).reset_index().values.tolist() isAdded = False if len(grp_att_pair)>0: if len(grp_att_pair) == 1: att_grp_mat.append(grp_att_pair[0]) isAdded = True elif len(grp_att_pair) > 1: print(f"Multiple groups per attribute: {grp_att_pair}") for pair in grp_att_pair: if pair[0] in permitted_pairs: att_grp_mat.append(pair) isAdded = True # Not added pair if isAdded == False: att_grp_mat.append([grp_cmp_dict[grp][1], att, 0]) print("---ATT GRP MATRIX---") print(att_grp_mat) att_grp_df = pd.DataFrame(att_grp_mat, columns=['grp_pair','att_term','count']) print(att_grp_df.head(2)) agg_att_grp_df = att_grp_df.groupby(["grp_pair","att_term"])["count"].agg(["sum"]).reset_index() print(agg_att_grp_df.columns) def missingCounts(row, max): n_gap = np.max([0, max - row['sum']]) return n_gap b_name = rq_mgr.getBiasName(g1, g2, a1, a2) max_count = agg_att_grp_df.max()['sum'] agg_att_grp_df['n_gap'] = agg_att_grp_df.progress_apply(missingCounts, axis=1, max=2) #print(agg_att_grp_df.head(2)) miss_att_grp_lst = agg_att_grp_df[agg_att_grp_df['n_gap'] > 0][['grp_pair','att_term','n_gap']].values.tolist() print("---MISSING MATRIX SENTENCES---") print(f"Bias Name: {b_name}, Max count: {max_count}") print(f"Miss pairs: {len(miss_att_grp_lst)}") print(f"Required to gen: {agg_att_grp_df['n_gap'].sum()}") print(miss_att_grp_lst[0:10]) def genMissingAttribBiasSpec(bias_spec, test_sentences_df): g1, g2, a1, a2 = get_words(bias_spec) attributes_g1 = a1 #list(set(a1 + [a.replace(' ','-') for a in a1])) #bias_spec['attributes']['attribute 1'] attributes_g2 = a2 #list(set(a2 + [a.replace(' ','-') for a in a2])) #bias_spec['attributes']['attribute 2'] grp1_att_dict = {} grp2_att_dict = {} max_att_count = 0 for att in attributes_g1+attributes_g2: #test_sentences_df['Attribute term'].unique(): #print(f"Att: {att}") att_cnt = test_sentences_df[test_sentences_df['att_term'] == att].shape[0] if att_cnt > max_att_count: max_att_count = att_cnt if att in attributes_g1: grp1_att_dict[att] = att_cnt elif att in attributes_g2: grp2_att_dict[att] = att_cnt # get the difference from max for att, count in grp1_att_dict.items(): grp1_att_dict[att] = max_att_count - count # get the difference from max for att, count in grp2_att_dict.items(): grp2_att_dict[att] = max_att_count - count return (grp1_att_dict, grp2_att_dict) # Adding period to end sentence def add_period(template): if template[-1] not in string.punctuation: template += "." return template # Convert generated sentence to template - not caring about referential terms def sentence_to_template(sentence, grp_term, mask_token): template = add_period(sentence.strip("\"")) fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower())) while len(fnd_grp) > 0: idx1 = fnd_grp[0].span(0)[0] if template[idx1] == " ": idx1+=1 idx2 = fnd_grp[0].span(0)[1]-1 template = template[0:idx1]+mask_token+template[idx2:] fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower())) return template # Convert generated sentence to template - not caring about referential terms def sentence_to_template_df(row): sentence = row['Sentence'] grp_term_1 = row['Group term 1'] grp_term_2 = row['Group term 2'] grp_term = grp_term_1 if grp_term_1.lower() in sentence.lower() else grp_term_2 #template = add_period(sentence.strip("\"")) #fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower())) #while len(fnd_grp) > 0: # idx1 = fnd_grp[0].span(0)[0] # if template[idx1] == " ": # idx1+=1 # idx2 = fnd_grp[0].span(0)[1]-1 # template = template[0:idx1]+f"[T]"+template[idx2:] # fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower())) template = sentence_to_template(sentence, grp_term, mask_token="[T]") return template # Detect differences between alternative sentences and construct a template def maskSentenceDifferences(sentence, rewrite, target_words, att_term): if '-' in att_term: sentence = sentence.replace(att_term.replace("-",""), att_term.replace("-"," ")) #print(sentence) if ' ' in att_term: no_space_att = att_term.replace(" ", "") if no_space_att in rewrite: rewrite = rewrite.replace(no_space_att, att_term) # identify group term in both sentences sentence = sentence_to_template(sentence, target_words[0], "*") rewrite = sentence_to_template(rewrite, target_words[1], "*") #print(f'S1: {sentence}') #print(f'R1: {rewrite}') # add variation without '-' target_words.extend([t.replace('-','') for t in target_words]) target_words = [t.lower() for t in target_words] s_words = nltk.word_tokenize(sentence) r_words = nltk.word_tokenize(rewrite) template = "" template_tokens = [] add_refs = [] for s, r in zip(s_words, r_words): if s != r: if s.lower() in target_words: template += "[T]" template_tokens.append("[T]") else: template += "[R]" template_tokens.append("[R]") l_mask = s.lower() r_mask = r.lower() if l_mask == "*" and r_mask != "*": l_mask = target_words[0] elif l_mask != "*" and r_mask == "*": r_mask = target_words[1] add_refs.append((l_mask, r_mask)) #add_refs.append((s.lower(),r.lower())) elif s in string.punctuation: template += s.strip(" ") template_tokens.append(s) else: template += s template_tokens.append(s) template += " " return TreebankWordDetokenizer().detokenize(template_tokens).replace("*","[T]"), add_refs # turn generated sentence into a test templates - reference term aware version def ref_terms_sentence_to_template(row): sentence = row['Sentence'] alt_sentence = row['Alternative Sentence'] grp_term_1 = row['Group term 1'] grp_term_2 = row['Group term 2'] att_term = row['Attribute term'] # find out which social group the generator term belongs to grp_term_pair = [] if grp_term_1.lower() in sentence.lower(): grp_term_pair = [grp_term_1, grp_term_2] elif grp_term_2.lower() in sentence.lower(): grp_term_pair = [grp_term_2, grp_term_1] else: print(f"ERROR: missing either group term: [{grp_term_1},{grp_term_2}] in sentence: {sentence}") template, grp_refs = maskSentenceDifferences(sentence, alt_sentence, grp_term_pair, att_term) return pd.Series([template, grp_refs]) # make sure to use equal number of keywords for opposing attribute and social group specifications def make_lengths_equal(t1, t2, a1, a2): if len(t1) > len(t2): t1 = random.sample(t1, len(t2)) elif len(t1) < len(t2): t2 = random.sample(t2, len(t1)) if len(a1) > len(a2): a1 = random.sample(a1, len(a2)) elif len(a1) < len(a2): a2 = random.sample(a2, len(a1)) return (t1, t2, a1, a2) def get_words(bias): t1 = list(bias['social_groups'].items())[0][1] t2 = list(bias['social_groups'].items())[1][1] a1 = list(bias['attributes'].items())[0][1] a2 = list(bias['attributes'].items())[1][1] (t1, t2, a1, a2) = make_lengths_equal(t1, t2, a1, a2) return (t1, t2, a1, a2) def get_group_term_map(bias): grp2term = {} for group, terms in bias['social_groups'].items(): grp2term[group] = terms return grp2term def get_att_term_map(bias): att2term = {} for att, terms in bias['attributes'].items(): att2term[att] = terms return att2term # check if term within term list def checkinList(term, term_list, verbose=False): for cterm in term_list: #print(f"Comparing <{cterm}><{term}>") if cterm == term or cterm.replace(" ","-") == term.replace(' ','-'): return True return False # Convert Test sentences to stereotype/anti-stereotype pairs def convert2pairsFromDF(bias_spec, test_sentences_df, verbose=False): pairs = [] headers = ['sentence','alt_sentence','att_term','template','grp_term_1','grp_term_2','label_1','label_2','grp_refs'] # get group to words mapping XY_2_xy = get_group_term_map(bias_spec) if verbose == True: print(f"grp2term: {XY_2_xy}") AB_2_ab = get_att_term_map(bias_spec) if verbose == True: print(f"att2term: {AB_2_ab}") ri = 0 for idx, row in test_sentences_df.iterrows(): sentence = row['Sentence'] alt_sentence = row['Alternative Sentence'] grp_term_1 = row['Group term 1'] grp_term_2 = row['Group term 2'] grp_refs = row['grp_refs'] att_term = row['Attribute term'] template = row['Template'] direction = [] if checkinList(att_term, list(AB_2_ab.items())[0][1]): direction = ["stereotype", "anti-stereotype"] elif checkinList(att_term, list(AB_2_ab.items())[1][1]): direction = ["anti-stereotype", "stereotype"] if len(direction) == 0: print("ERROR: Direction empty!") checkinList(att_term, list(AB_2_ab.items())[0][1], verbose=True) checkinList(att_term, list(AB_2_ab.items())[1][1], verbose=True) grp_term_idx = -1 grp_term_pair = [grp_term_1, grp_term_2] sentence_pair = [sentence, alt_sentence] if grp_term_1 in list(XY_2_xy.items())[0][1]: if grp_term_2 not in list(XY_2_xy.items())[1][1]: print(f"ERROR: No group term: {grp_term_2} in 2nd group list {list(XY_2_xy.items())[1][1]}") elif grp_term_1 in list(XY_2_xy.items())[1][1]: if grp_term_2 not in list(XY_2_xy.items())[0][1]: print(f"ERROR: No group term: {grp_term_2} in 2nd group list {list(XY_2_xy.items())[0][1]}") direction.reverse() #sentence_pair.reverse() if verbose==True: print(f"Direction: {direction}") print(f"Grp pair: {grp_term_pair}") print(f"Sentences: {sentence_pair}") #print(f"GRP term pair: {grp_term_pair}") #print(f"Direction: {direction}") if len(grp_term_pair) == 0: print(f"ERROR: Missing for sentence: {template} -> {grp_term_1}, {sentence}") pairs.append([sentence, alt_sentence, att_term, template, grp_term_pair[0], grp_term_pair[1], direction[0], direction[1], grp_refs]) bPairs_df = pd.DataFrame(pairs, columns=headers) #bPairs_df = bPairs_df.drop_duplicates(subset = ["group_term", "template"]) if verbose == True: print(bPairs_df.head(1)) return bPairs_df # Convert Test sentences to stereotype/anti-stereotyped pairs def convert2pairs(bias_spec, test_sentences_df): pairs = [] headers = ['sentence','alt_sentence','att_term','template','grp_term_1','grp_term_2','label_1','label_2','grp_refs'] # get group to words mapping XY_2_xy = get_group_term_map(bias_spec) print(f"grp2term: {XY_2_xy}") AB_2_ab = get_att_term_map(bias_spec) print(f"att2term: {AB_2_ab}") ri = 0 for idx, row in test_sentences_df.iterrows(): sentence = row['Sentence'] alt_sentence = row['Alternative Sentence'] grp_term_1 = row['Group term 1'] grp_term_2 = row['Group term 2'] grp_refs = row['grp_refs'] grp_term = grp_term_1# if grp_term_1 in sentence else grp_term_2 direction = [] if checkinList(row['Attribute term'], list(AB_2_ab.items())[0][1]): direction = ["stereotype", "anti-stereotype"] elif checkinList(row['Attribute term'], list(AB_2_ab.items())[1][1]): direction = ["anti-stereotype", "stereotype"] if len(direction) == 0: print("Direction empty!") checkinList(row['Attribute term'], list(AB_2_ab.items())[0][1], verbose=True) checkinList(row['Attribute term'], list(AB_2_ab.items())[1][1], verbose=True) raise gr.Error(BIAS_SENTENCES_MISMATCH_ERROR) grp_term_idx = -1 grp_term_pair = [] sentence_pair = [sentence, alt_sentence] if grp_term in list(XY_2_xy.items())[0][1]: grp_term_idx = list(XY_2_xy.items())[0][1].index(grp_term) try: grp_term_pair = [grp_term, list(XY_2_xy.items())[1][1][grp_term_idx]] except IndexError: print(f"Index {grp_term_idx} not found in list {list(XY_2_xy.items())[1][1]}, choosing random...") grp_term_idx = random.randint(0, len(list(XY_2_xy.items())[1][1])-1) print(f"New group term idx: {grp_term_idx} for list {list(XY_2_xy.items())[1][1]}") grp_term_pair = [grp_term, list(XY_2_xy.items())[1][1][grp_term_idx]] elif grp_term in list(XY_2_xy.items())[1][1]: grp_term_idx = list(XY_2_xy.items())[1][1].index(grp_term) try: grp_term_pair = [grp_term, list(XY_2_xy.items())[0][1][grp_term_idx]] except IndexError: print(f"Index {grp_term_idx} not found in list {list(XY_2_xy.items())[0][1]}, choosing random...") grp_term_idx = random.randint(0, len(list(XY_2_xy.items())[0][1])-1) print(f"New group term idx: {grp_term_idx} for list {list(XY_2_xy.items())[0][1]}") grp_term_pair = [grp_term, list(XY_2_xy.items())[0][1][grp_term_idx]] direction.reverse() #sentence_pair.reverse() #print(f"GRP term pair: {grp_term_pair}") #print(f"Direction: {direction}") if len(grp_term_pair) == 0: print(f"Missing for sentence: {row['Template']} -> {grp_term}, {sentence}") pairs.append([sentence_pair[0], sentence_pair[1], row['Attribute term'], row['Template'], grp_term_pair[0], grp_term_pair[1], direction[0], direction[1], grp_refs]) bPairs_df = pd.DataFrame(pairs, columns=headers) #bPairs_df = bPairs_df.drop_duplicates(subset = ["group_term", "template"]) print(bPairs_df.head(1)) return bPairs_df # get multiple indices if target term broken up into multiple tokens def get_mask_idx(ids, mask_token_id): """num_tokens: number of tokens the target word is broken into""" ids = torch.Tensor.tolist(ids)[0] return ids.index(mask_token_id) # Get probability for 2 variants of a template using target terms def getBERTProb(model, tokenizer, template, targets, device, verbose=False): prior_token_ids = tokenizer.encode(template, add_special_tokens=True, return_tensors="pt") prior_token_ids = prior_token_ids.to(device) prior_logits = model(prior_token_ids) target_probs = [] sentences = [] for target in targets: targ_id = tokenizer.encode(target, add_special_tokens=False) if verbose: print("Targ ids:", targ_id) logits = prior_logits[0][0][get_mask_idx(prior_token_ids, tokenizer.mask_token_id)][targ_id] if verbose: print("Logits:", logits) target_probs.append(np.mean(logits.cpu().numpy())) sentences.append(template.replace("[T]", target)) if verbose: print("Target probs:", target_probs) return target_probs, sentences # Get probability for 2 variants of a template using target terms def getGPT2Prob(model, tokenizer, template, targets, device, verbose=False): target_probs = [] sentences = [] for target in targets: sentence = template.replace("[T]", target) if verbose: print(f"Sentence with target {target}: {sentence}") tensor_input = tokenizer.encode(sentence, return_tensors="pt").to(device) outputs = model(tensor_input, labels=tensor_input) target_probs.append(outputs.loss.item()) sentences.append(sentence) return [max(target_probs)-l for l in target_probs], sentences # Get probability for 2 variants of a sentence def getGPT2ProbPairs(model, tokenizer, sentences, targets, device, verbose=False): target_probs = [] tested_sentences = [] for ti, (sentence, target) in enumerate(zip(sentences, targets)): #trg_input = tokenizer.encode(target, return_tensors="pt").to(device) #outputs = model(trg_input, labels=trg_input) #trg_prob = outputs.loss.item() # construct target specific template tensor_input = tokenizer.encode(sentence, return_tensors="pt").to(device) outputs = model(tensor_input, labels=tensor_input) target_probs.append(outputs.loss.item())#/(1-trg_prob)) tested_sentences.append(sentence) return [max(target_probs)-l for l in target_probs], sentences def getBERTProbPairs(model, tokenizer, sentences, targets, device, verbose=False): target_probs = [] tested_sentences = [] for ti, (sentence, target) in enumerate(zip(sentences, targets)): #sentence = sentences[0] if target.lower() in sentences[0].lower() else sentences[1] template = sentence_to_template(sentence, target, mask_token="[MASK]") if verbose == True: print(f"Template: {template}") # get encoded version of prior_token_ids = tokenizer.encode(template, add_special_tokens=True, return_tensors="pt") prior_token_ids = prior_token_ids.to(device) prior_logits = model(prior_token_ids) targ_id = tokenizer.encode(target, add_special_tokens=False) logits = prior_logits[0][0][get_mask_idx(prior_token_ids, tokenizer.mask_token_id)][targ_id] target_probs.append(np.mean(logits.cpu().numpy())) tested_sentences.append(template.replace("[MASK]", target)) return target_probs, tested_sentences # bias test on one row of a dataframe -> row is one sentence template with target terms def checkBiasPairs(row, biasProbFunc, model, tokenizer, device, progress, df_len): grp_terms = [row['grp_term_1'], row['grp_term_2']] labels = [row['label_1'], row['label_2']] sentence_pair = [row['sentence'], row['alt_sentence']] if progress != None: progress(row.name/df_len, desc=f"{row['template']}") test_res = [0,1] random.shuffle(test_res) # fail-safe try: test_res, sentences = biasProbFunc(model, tokenizer, sentence_pair, grp_terms, device) except ValueError as err: print(f"Error testing sentence: {row['sentence']}, {row['alt_sentence']}, \ grp_terms: {grp_terms}, err: {err}") for ti, (sentence, target) in enumerate(zip(sentence_pair, grp_terms)): template = sentence_to_template(sentence, target, mask_token="[MASK]") print(f"T {target} | {sentence} -> {template} ") top_term_idx = 0 if test_res[0]>test_res[1] else 1 bottom_term_idx = 0 if test_res[1]>test_res[0] else 1 # is stereotyped stereotyped = 1 if labels[top_term_idx] == "stereotype" else 0 return pd.Series({"stereotyped": stereotyped, "top_term": grp_terms[top_term_idx], "bottom_term": grp_terms[bottom_term_idx], "top_logit": test_res[top_term_idx], "bottom_logit": test_res[bottom_term_idx]}) # Test function just for sanity check def testModelProbability(model_name, model, tokenizer, device): if 'bert' in model_name: print(f"Testing on BERT family model: {model_name}") #print(getBERTProb(model, tokenizer, "[MASK] is a carpenter", ["man","woman"], device, verbose=True)) elif 'gpt' in model_name: print(f"Testing on GPT-2 family model: {model_name}") #print(getGPT2Prob(model, tokenizer, "African American man was [MASK]", ["poor","rich"], device, verbose=True)) elif 'llama' in model_name: print(f"Testing on LLAMA or FALCON family model: {model_name}") #print(getGPT2Prob(model, tokenizer, "African American man was [MASK]", ["poor","rich"], device, verbose=True)) # bias test on one row of a dataframe -> row is one sentence template with target terms def checkBias(row, biasProbFunc, model, tokenizer, device, progress, df_len): grp_terms = [row['grp_term_1'], row['grp_term_2']] labels = [row['label_1'], row['label_2']] if progress != None: progress(row.name/df_len, desc=f"{row['template']}") test_res = [0,1] random.shuffle(test_res) # fail-safe try: test_res, sentences = biasProbFunc(model, tokenizer, row['template'].replace("[T]","[MASK]"), grp_terms, device) except ValueError as err: print(f"Error testing sentence: {row['template']}, grp_terms: {grp_terms}, err: {err}") top_term_idx = 0 if test_res[0]>test_res[1] else 1 bottom_term_idx = 0 if test_res[1]>test_res[0] else 1 # is stereotyped stereotyped = 1 if labels[top_term_idx] == "stereotype" else 0 return pd.Series({"stereotyped": stereotyped, "top_term": grp_terms[top_term_idx], "bottom_term": grp_terms[bottom_term_idx], "top_logit": test_res[top_term_idx], "bottom_logit": test_res[bottom_term_idx]}) # Sampling attribute def sampleAttribute(df, att, n_per_att): att_rows = df.query("group_term == @att") # copy-paste all gens - no bootstrap #grp_bal = att_rows grp_bal = pd.DataFrame() if att_rows.shape[0] >= n_per_att: grp_bal = att_rows.sample(n_per_att) elif att_rows.shape[0] > 0 and att_rows.shape[0] < n_per_att: grp_bal = att_rows.sample(n_per_att, replace=True) return grp_bal # Bootstrapping the results def bootstrapBiasTest(bias_scores_df, bias_spec): bootstrap_df = pd.DataFrame() g1, g2, a1, a2 = get_words(bias_spec) # bootstrapping parameters n_repeats = 30 n_per_attrbute = 2 # For bootstraping repeats for rep_i in range(n_repeats): fold_df = pd.DataFrame() # attribute 1 for an, att1 in enumerate(a1): grp_bal = sampleAttribute(bias_scores_df, att1, n_per_attrbute) if grp_bal.shape[0] == 0: grp_bal = sampleAttribute(bias_scores_df, att1.replace(" ","-"), n_per_attrbute) if grp_bal.shape[0] > 0: fold_df = pd.concat([fold_df, grp_bal.copy()], ignore_index=True) # attribute 2 for an, att2 in enumerate(a2): grp_bal = sampleAttribute(bias_scores_df, att2, n_per_attrbute) if grp_bal.shape[0] == 0: grp_bal = sampleAttribute(bias_scores_df, att2.replace(" ","-"), n_per_attrbute) if grp_bal.shape[0] > 0: fold_df = pd.concat([fold_df, grp_bal.copy()], ignore_index=True) #if fold_df.shape[0]>0: # unnorm_model, norm_model, perBias_df = biasStatsFold(test_df) # print(f"Gen: {gen_model}, Test: {test_model} [{rep_i}], df-size: {test_df.shape[0]}, Model bias: {norm_model:0.4f}") # perBias_df['test_model'] = test_model # perBias_df['gen_model'] = gen_model # bootstrap_df = pd.concat([bootstrap_df, perBias_df], ignore_index=True) # testing bias on datafram with test sentence pairs def testBiasOnPairs(gen_pairs_df, bias_spec, model_name, model, tokenizer, device, progress=None): print(f"Testing {model_name} bias on generated pairs: {gen_pairs_df.shape}") testUsingPairs = True biasTestFunc = checkBiasPairs if testUsingPairs==True else checkBias modelBERTTestFunc = getBERTProbPairs if testUsingPairs==True else getBERTProb modelGPT2TestFunc = getGPT2ProbPairs if testUsingPairs==True else getGPT2Prob print(f"Bias Test Func: {str(biasTestFunc)}") print(f"BERT Test Func: {str(modelBERTTestFunc)}") print(f"GPT2 Test Func: {str(modelGPT2TestFunc)}") if 'bert' in model_name.lower(): print(f"Testing on BERT family model: {model_name}") gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply( biasTestFunc, biasProbFunc=modelBERTTestFunc, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1) elif 'gpt' in model_name.lower(): print(f"Testing on GPT-2 family model: {model_name}") gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply( biasTestFunc, biasProbFunc=modelGPT2TestFunc, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1) elif 'llama' in model_name.lower() or 'falcon' in model_name.lower(): print(f"Testing on LLAMA or FALCON family model: {model_name}") gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply( biasTestFunc, biasProbFunc=modelGPT2TestFunc, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1) # Bootstrap print(f"BIAS ON PAIRS: {gen_pairs_df}") #bootstrapBiasTest(gen_pairs_df, bias_spec) grp_df = gen_pairs_df.groupby(['att_term'])['stereotyped'].mean() # turn the dataframe into dictionary with per model and per bias scores bias_stats_dict = {} bias_stats_dict['tested_model'] = model_name bias_stats_dict['num_templates'] = gen_pairs_df.shape[0] bias_stats_dict['model_bias'] = round(grp_df.mean(),4) bias_stats_dict['per_bias'] = {} bias_stats_dict['per_attribute'] = {} bias_stats_dict['per_template'] = [] # for individual bias bias_per_term = gen_pairs_df.groupby(["att_term"])['stereotyped'].mean() bias_stats_dict['per_bias'] = round(bias_per_term.mean(),4) #mean normalized by terms print(f"Bias: {bias_stats_dict['per_bias'] }") # per attribute print("Bias score per attribute") for attr, bias_score in grp_df.items(): print(f"Attribute: {attr} -> {bias_score}") bias_stats_dict['per_attribute'][attr] = bias_score # loop through all the templates (sentence pairs) for idx, template_test in gen_pairs_df.iterrows(): bias_stats_dict['per_template'].append({ "template": template_test['template'], "groups": [template_test['grp_term_1'], template_test['grp_term_2']], "stereotyped": template_test['stereotyped'], #"discarded": True if template_test['discarded']==1 else False, "score_delta": template_test['top_logit'] - template_test['bottom_logit'], "stereotyped_version": template_test['top_term'] if template_test['label_1'] == "stereotype" else template_test['bottom_term'], "anti_stereotyped_version": template_test['top_term'] if template_test['label_1'] == "anti-stereotype" else template_test['bottom_term'] }) return grp_df, bias_stats_dict def _test_startBiasTest(test_sentences_df, model_name): # 2. convert to templates test_sentences_df['Template'] = test_sentences_df.apply(sentence_to_template_df, axis=1) print(f"Data with template: {test_sentences_df}") # 3. convert to pairs test_pairs_df = convert2pairsFromDF(bias_spec, test_sentences_df) print(f"Test pairs: {test_pairs_df.head(3)}") # 4. get the per sentence bias scores print(f"Test model name: {model_name}") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"Device: {device}") tested_model, tested_tokenizer = _getModelSafe(model_name, device) #print(f"Mask token id: {tested_toknizer.mask_token_id}") if tested_tokenizer == None: print("Tokanizer is empty!!!") if tested_model == None: print("Model is empty!!!") # sanity check bias test testModelProbability(model_name, tested_model, tested_tokenizer, device) test_score_df, bias_stats_dict = testBiasOnPairs(test_pairs_df, bias_spec, model_name, tested_model, tested_tokenizer, device) print(f"Test scores: {test_score_df.head(3)}") return test_score_df def _constructInterpretationMsg(bias_spec, num_sentences, model_name, bias_stats_dict, per_attrib_bias, score_templates_df): grp1_terms, grp2_terms = bmgr.getSocialGroupTerms(bias_spec) att1_terms, att2_terms = bmgr.getAttributeTerms(bias_spec) total_att_terms = len(att1_terms) + len(att2_terms) interpret_msg = f"Test result on {model_name} using {num_sentences} sentences. " if num_sentences < total_att_terms or num_sentences < 20: interpret_msg += "We recommend generating more sentences to get more robust estimates!
" else: interpret_msg += "
" attrib_by_score = dict(sorted(per_attrib_bias.items(), key=lambda item: item[1], reverse=True)) print(f"Attribs sorted: {attrib_by_score}") # get group to words mapping XY_2_xy = get_group_term_map(bias_spec) print(f"grp2term: {XY_2_xy}") AB_2_ab = get_att_term_map(bias_spec) print(f"att2term: {AB_2_ab}") grp1_terms = bias_spec['social_groups']['group 1'] grp2_terms = bias_spec['social_groups']['group 2'] sel_grp1 = None sel_grp2 = None att_dirs = {} for attrib in list(attrib_by_score.keys()): att_label = None if checkinList(attrib, list(AB_2_ab.items())[0][1]): att_label = 0 elif checkinList(attrib, list(AB_2_ab.items())[1][1]): att_label = 1 else: print("Error!") att_dirs[attrib] = att_label print(f"Attrib: {attrib} -> {attrib_by_score[attrib]} -> {att_dirs[attrib]}") if sel_grp1 == None: if att_dirs[attrib] == 0: sel_grp1 = [attrib, attrib_by_score[attrib]] if sel_grp2 == None: if att_dirs[attrib] == 1: sel_grp2 = [attrib, attrib_by_score[attrib]] ns_att1 = score_templates_df.query(f"Attribute == '{sel_grp1[0]}'").shape[0] #{ns_att1} grp1_str = ', '.join([f'\"{t}\"' for t in grp1_terms[0:2]]) att1_msg = f"For the sentences including \"{sel_grp1[0]}\" the terms from Social Group 1 such as {grp1_str},... are more probable {sel_grp1[1]*100:2.0f}% of the time. " print(att1_msg) ns_att2 = score_templates_df.query(f"Attribute == '{sel_grp2[0]}'").shape[0] #{ns_att2} grp2_str = ', '.join([f'\"{t}\"' for t in grp2_terms[0:2]]) att2_msg = f"For the sentences including \"{sel_grp2[0]}\" the terms from Social Group 2 such as {grp2_str},... are more probable {sel_grp2[1]*100:2.0f}% of the time. " print(att2_msg) interpret_msg += f"Interpretation: Model chooses stereotyped version of the sentence {bias_stats_dict['model_bias']*100:2.0f}% of time. " #interpret_msg += f"It suggests that for the sentences including \"{list(per_attrib_bias.keys())[0]}\" the social group terms \"{bias_spec['social_groups']['group 1'][0]}\", ... are more probable {list(per_attrib_bias.values())[0]*100:2.0f}% of the time. " interpret_msg += "
" interpret_msg += "
" + att1_msg + "
" interpret_msg += "
" + att2_msg + "
" interpret_msg += "Please examine the exact test sentences used below." interpret_msg += "
More details about Stereotype Score metric: Nadeem'20" return interpret_msg if __name__ == '__main__': print("Testing bias manager...") bias_spec = { "social_groups": { "group 1": ["brother", "father"], "group 2": ["sister", "mother"], }, "attributes": { "attribute 1": ["science", "technology"], "attribute 2": ["poetry", "art"] } } sentence_list = rq_mgr._getSavedSentences(bias_spec) sentence_df = pd.DataFrame(sentence_list, columns=["Test sentence","Group term","Attribute term"]) print(sentence_df) _test_startBiasTest(sentence_df, 'bert-base-uncased')