Spaces:
Runtime error
Runtime error
File size: 8,033 Bytes
dc7dc01 4d2e6b8 dc7dc01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import torch
import gradio as gr
from PIL import Image
import torch.nn as nn
from torch.nn import functional as nnf
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import cv2
from PIL import Image
from typing import Tuple, Optional, Union
import clip
gpt_model_name = 'sberbank-ai/rugpt3medium_based_on_gpt2'
class MLP(nn.Module):
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
super(MLP, self).__init__()
layers = []
for i in range(len(sizes) - 1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
# @autocast()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def freeze(
model,
freeze_emb=False,
freeze_ln=False,
freeze_attn=True,
freeze_ff=True,
freeze_other=False,
):
for name, p in model.named_parameters():
# freeze all parameters except the layernorm and positional embeddings
name = name.lower()
if 'ln' in name or 'norm' in name:
p.requires_grad = not freeze_ln
elif 'embeddings' in name:
p.requires_grad = not freeze_emb
elif 'mlp' in name:
p.requires_grad = not freeze_ff
elif 'attn' in name:
p.requires_grad = not freeze_attn
else:
p.requires_grad = not freeze_other
return model
class ClipCaptionModel(nn.Module):
def __init__(self, prefix_length: int, prefix_size: int = 768):
super(ClipCaptionModel, self).__init__()
self.prefix_length = prefix_length
"""
ru gpts shit
"""
self.gpt = GPT2LMHeadModel.from_pretrained(gpt_model_name)
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2,
self.gpt_embedding_size * prefix_length))
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
# @autocast()
def forward(self, tokens: torch.Tensor, prefix: torch.Tensor, mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None):
embedding_text = self.gpt.transformer.wte(tokens)
prefix_projections = self.clip_project(prefix.float()).view(-1, self.prefix_length, self.gpt_embedding_size)
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
if labels is not None:
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
labels = torch.cat((dummy_token, tokens), dim=1)
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
return out
class ClipCaptionPrefix(ClipCaptionModel):
def parameters(self, recurse: bool = True):
return self.clip_project.parameters()
def train(self, mode: bool = True):
super(ClipCaptionPrefix, self).train(mode)
self.gpt.eval()
return self
def filter_ngrams(output_text):
a_pos = output_text.find(' Ответ:')
sec_a_pos = output_text.find(' Ответ:', a_pos + 1)
return output_text[:sec_a_pos]
def generate2(
model,
tokenizer,
tokens=None,
prompt='',
embed=None,
entry_count=1,
entry_length=67, # maximum number of words
top_p=0.98,
temperature=1.,
stop_token='.',
):
model.eval()
generated_num = 0
generated_list = []
stop_token_index = tokenizer.encode(stop_token)[0]
filter_value = -float("Inf")
device = next(model.parameters()).device
with torch.no_grad():
for entry_idx in range(entry_count):
if not tokens:
tokens = torch.tensor(tokenizer.encode(prompt))
# print('tokens',tokens)
tokens = tokens.unsqueeze(0).to(device)
emb_tokens = model.gpt.transformer.wte(tokens)
if embed is not None:
generated = torch.cat((embed, emb_tokens), dim=1)
else:
generated = emb_tokens
for i in range(entry_length):
outputs = model.gpt(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[:, indices_to_remove] = filter_value
top_k = 2000
top_p = 0.98
next_token = torch.argmax(logits, -1).unsqueeze(0)
next_token_embed = model.gpt.transformer.wte(next_token)
if tokens is None:
tokens = next_token
else:
tokens = torch.cat((tokens, next_token), dim=1)
generated = torch.cat((generated, next_token_embed), dim=1)
if stop_token_index == next_token.item():
break
decoder_inputs_embeds = next_token_embed
output_list = list(tokens.squeeze().cpu().numpy())
output_text = tokenizer.decode(output_list)
output_text = filter_ngrams(output_text)
generated_list.append(output_text)
return generated_list[0]
def read_image(path):
image = cv2.imread(path)
size = 196, 196
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
image.thumbnail(size, Image.Resampling.LANCZOS)
return image
def create_emb(image):
text = "Вопрос: что происходит на изображении? Ответ: "
image = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
return (prefix, text)
def get_caption(prefix, prompt=''):
prefix = prefix.to(device)
with torch.no_grad():
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
if prompt:
generated_text_prefix = generate2(model, tokenizer, prompt=prompt, embed=prefix_embed)
else:
generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed)
return generated_text_prefix.replace('\n', ' ')
def get_ans(clip_emb, prompt):
output = get_caption(clip_emb, prompt=prompt)
ans = output[len(prompt):].strip()
return ans
device = 'cpu'
clip_model, preprocess = clip.load("ViT-L/14@336px", device=device, jit=False)
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3medium_based_on_gpt2')
prefix_length = 30
model_path = 'prefix_small_latest_gpt2_medium.pt'
model = ClipCaptionPrefix(prefix_length)
model.load_state_dict(torch.load(model_path, map_location='cpu'))
model.to(device)
model.eval()
def classify_image(inp):
print(type(inp))
inp = Image.fromarray(inp)
prefix, text = create_emb(path_to_image)
ans = get_ans(prefix, text)
return texts
image = gr.inputs.Image(shape=(256, 256))
label = gr.outputs.Label(num_top_classes=3)
iface = gr.Interface(fn=classify_image, description="https://github.com/AlexWortega/ruImageCaptioning RuImage Captioning trained for a image2text task to predict caption of image by https://t.me/lovedeathtransformers Alex Wortega", inputs=image, outputs="text")
iface.launch()
|