Spaces:
Sleeping
Sleeping
File size: 23,073 Bytes
251e479 2896183 251e479 2896183 251e479 2896183 251e479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
"""SAMPLING ONLY."""
# CrossAttn precision handling
import os
import einops
import numpy as np
import torch
from tqdm import tqdm
from ControlNet.ldm.modules.diffusionmodules.util import (
extract_into_tensor, make_ddim_sampling_parameters, make_ddim_timesteps,
noise_like)
_ATTN_PRECISION = os.environ.get('ATTN_PRECISION', 'fp32')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def register_attention_control(model, controller=None):
def ca_forward(self, place_in_unet):
def forward(x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
is_cross = context is not None
context = context if is_cross else x
context = controller(context, is_cross, place_in_unet)
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(
lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h),
(q, k, v))
# force cast to fp32 to avoid overflowing
if _ATTN_PRECISION == 'fp32':
with torch.autocast(enabled=False, device_type=device):
q, k = q.float(), k.float()
sim = torch.einsum('b i d, b j d -> b i j', q,
k) * self.scale
else:
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
del q, k
if mask is not None:
mask = einops.rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = einops.repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = torch.einsum('b i j, b j d -> b i d', sim, v)
out = einops.rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
return forward
class DummyController:
def __call__(self, *args):
return args[0]
def __init__(self):
self.cur_step = 0
if controller is None:
controller = DummyController()
def register_recr(net_, place_in_unet):
if net_.__class__.__name__ == 'CrossAttention':
net_.forward = ca_forward(net_, place_in_unet)
elif hasattr(net_, 'children'):
for net__ in net_.children():
register_recr(net__, place_in_unet)
sub_nets = model.named_children()
for net in sub_nets:
if 'input_blocks' in net[0]:
register_recr(net[1], 'down')
elif 'output_blocks' in net[0]:
register_recr(net[1], 'up')
elif 'middle_block' in net[0]:
register_recr(net[1], 'mid')
class DDIMVSampler(object):
def __init__(self, model, schedule='linear', **kwargs):
super().__init__()
self.model = model
self.ddpm_num_timesteps = model.num_timesteps
self.schedule = schedule
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
if attr.device != torch.device(device):
attr = attr.to(torch.device(device))
setattr(self, name, attr)
def make_schedule(self,
ddim_num_steps,
ddim_discretize='uniform',
ddim_eta=0.,
verbose=True):
self.ddim_timesteps = make_ddim_timesteps(
ddim_discr_method=ddim_discretize,
num_ddim_timesteps=ddim_num_steps,
num_ddpm_timesteps=self.ddpm_num_timesteps,
verbose=verbose)
alphas_cumprod = self.model.alphas_cumprod
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, \
'alphas have to be defined for each timestep'
def to_torch(x):
return x.clone().detach().to(torch.float32).to(self.model.device)
self.register_buffer('betas', to_torch(self.model.betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev',
to_torch(self.model.alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod',
to_torch(np.sqrt(alphas_cumprod.cpu())))
self.register_buffer('sqrt_one_minus_alphas_cumprod',
to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
self.register_buffer('log_one_minus_alphas_cumprod',
to_torch(np.log(1. - alphas_cumprod.cpu())))
self.register_buffer('sqrt_recip_alphas_cumprod',
to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
self.register_buffer('sqrt_recipm1_alphas_cumprod',
to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
# ddim sampling parameters
ddim_sigmas, ddim_alphas, ddim_alphas_prev = \
make_ddim_sampling_parameters(
alphacums=alphas_cumprod.cpu(),
ddim_timesteps=self.ddim_timesteps,
eta=ddim_eta,
verbose=verbose)
self.register_buffer('ddim_sigmas', ddim_sigmas)
self.register_buffer('ddim_alphas', ddim_alphas)
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
self.register_buffer('ddim_sqrt_one_minus_alphas',
np.sqrt(1. - ddim_alphas))
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) *
(1 - self.alphas_cumprod / self.alphas_cumprod_prev))
self.register_buffer('ddim_sigmas_for_original_num_steps',
sigmas_for_original_sampling_steps)
@torch.no_grad()
def sample(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
xtrg=None,
noise_rescale=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
dynamic_threshold=None,
ucg_schedule=None,
controller=None,
strength=0.0,
**kwargs):
if conditioning is not None:
if isinstance(conditioning, dict):
ctmp = conditioning[list(conditioning.keys())[0]]
while isinstance(ctmp, list):
ctmp = ctmp[0]
cbs = ctmp.shape[0]
if cbs != batch_size:
print(f'Warning: Got {cbs} conditionings'
f'but batch-size is {batch_size}')
elif isinstance(conditioning, list):
for ctmp in conditioning:
if ctmp.shape[0] != batch_size:
print(f'Warning: Got {cbs} conditionings'
f'but batch-size is {batch_size}')
else:
if conditioning.shape[0] != batch_size:
print(f'Warning: Got {conditioning.shape[0]}'
f'conditionings but batch-size is {batch_size}')
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
samples, intermediates = self.ddim_sampling(
conditioning,
size,
callback=callback,
img_callback=img_callback,
quantize_denoised=quantize_x0,
mask=mask,
x0=x0,
xtrg=xtrg,
noise_rescale=noise_rescale,
ddim_use_original_steps=False,
noise_dropout=noise_dropout,
temperature=temperature,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
x_T=x_T,
log_every_t=log_every_t,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
dynamic_threshold=dynamic_threshold,
ucg_schedule=ucg_schedule,
controller=controller,
strength=strength,
)
return samples, intermediates
@torch.no_grad()
def ddim_sampling(self,
cond,
shape,
x_T=None,
ddim_use_original_steps=False,
callback=None,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
xtrg=None,
noise_rescale=None,
img_callback=None,
log_every_t=100,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
dynamic_threshold=None,
ucg_schedule=None,
controller=None,
strength=0.0):
if strength == 1 and x0 is not None:
return x0, None
register_attention_control(self.model.model.diffusion_model,
controller)
device = self.model.betas.device
b = shape[0]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
if timesteps is None:
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps \
else self.ddim_timesteps
elif timesteps is not None and not ddim_use_original_steps:
subset_end = int(
min(timesteps / self.ddim_timesteps.shape[0], 1) *
self.ddim_timesteps.shape[0]) - 1
timesteps = self.ddim_timesteps[:subset_end]
intermediates = {'x_inter': [img], 'pred_x0': [img]}
time_range = reversed(range(
0, timesteps)) if ddim_use_original_steps else np.flip(timesteps)
total_steps = timesteps if ddim_use_original_steps \
else timesteps.shape[0]
print(f'Running DDIM Sampling with {total_steps} timesteps')
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
if controller is not None:
controller.set_total_step(total_steps)
if mask is None:
mask = [None] * total_steps
dir_xt = 0
for i, step in enumerate(iterator):
if controller is not None:
controller.set_step(i)
index = total_steps - i - 1
ts = torch.full((b, ), step, device=device, dtype=torch.long)
if strength >= 0 and i == int(
total_steps * strength) and x0 is not None:
img = self.model.q_sample(x0, ts)
if mask is not None and xtrg is not None:
# TODO: deterministic forward pass?
if type(mask) == list:
weight = mask[i]
else:
weight = mask
if weight is not None:
rescale = torch.maximum(1. - weight, (1 - weight**2)**0.5 *
controller.inner_strength)
if noise_rescale is not None:
rescale = (1. - weight) * (
1 - noise_rescale) + rescale * noise_rescale
img_ref = self.model.q_sample(xtrg, ts)
img = img_ref * weight + (1. - weight) * (
img - dir_xt) + rescale * dir_xt
if ucg_schedule is not None:
assert len(ucg_schedule) == len(time_range)
unconditional_guidance_scale = ucg_schedule[i]
outs = self.p_sample_ddim(
img,
cond,
ts,
index=index,
use_original_steps=ddim_use_original_steps,
quantize_denoised=quantize_denoised,
temperature=temperature,
noise_dropout=noise_dropout,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
dynamic_threshold=dynamic_threshold,
controller=controller,
return_dir=True)
img, pred_x0, dir_xt = outs
if callback:
callback(i)
if img_callback:
img_callback(pred_x0, i)
if index % log_every_t == 0 or index == total_steps - 1:
intermediates['x_inter'].append(img)
intermediates['pred_x0'].append(pred_x0)
return img, intermediates
@torch.no_grad()
def p_sample_ddim(self,
x,
c,
t,
index,
repeat_noise=False,
use_original_steps=False,
quantize_denoised=False,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
dynamic_threshold=None,
controller=None,
return_dir=False):
b, *_, device = *x.shape, x.device
if unconditional_conditioning is None or \
unconditional_guidance_scale == 1.:
model_output = self.model.apply_model(x, t, c)
else:
model_t = self.model.apply_model(x, t, c)
model_uncond = self.model.apply_model(x, t,
unconditional_conditioning)
model_output = model_uncond + unconditional_guidance_scale * (
model_t - model_uncond)
if self.model.parameterization == 'v':
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
else:
e_t = model_output
if score_corrector is not None:
assert self.model.parameterization == 'eps', 'not implemented'
e_t = score_corrector.modify_score(self.model, e_t, x, t, c,
**corrector_kwargs)
if use_original_steps:
alphas = self.model.alphas_cumprod
alphas_prev = self.model.alphas_cumprod_prev
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod
sigmas = self.model.ddim_sigmas_for_original_num_steps
else:
alphas = self.ddim_alphas
alphas_prev = self.ddim_alphas_prev
sqrt_one_minus_alphas = self.ddim_sqrt_one_minus_alphas
sigmas = self.ddim_sigmas
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1),
sqrt_one_minus_alphas[index],
device=device)
# current prediction for x_0
if self.model.parameterization != 'v':
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
else:
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
if quantize_denoised:
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
if dynamic_threshold is not None:
raise NotImplementedError()
'''
if mask is not None and xtrg is not None:
pred_x0 = xtrg * mask + (1. - mask) * pred_x0
'''
if controller is not None:
pred_x0 = controller.update_x0(pred_x0)
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device,
repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
if return_dir:
return x_prev, pred_x0, dir_xt
return x_prev, pred_x0
@torch.no_grad()
def encode(self,
x0,
c,
t_enc,
use_original_steps=False,
return_intermediates=None,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
callback=None):
timesteps = np.arange(self.ddpm_num_timesteps
) if use_original_steps else self.ddim_timesteps
num_reference_steps = timesteps.shape[0]
assert t_enc <= num_reference_steps
num_steps = t_enc
if use_original_steps:
alphas_next = self.alphas_cumprod[:num_steps]
alphas = self.alphas_cumprod_prev[:num_steps]
else:
alphas_next = self.ddim_alphas[:num_steps]
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
x_next = x0
intermediates = []
inter_steps = []
for i in tqdm(range(num_steps), desc='Encoding Image'):
t = torch.full((x0.shape[0], ),
timesteps[i],
device=self.model.device,
dtype=torch.long)
if unconditional_guidance_scale == 1.:
noise_pred = self.model.apply_model(x_next, t, c)
else:
assert unconditional_conditioning is not None
e_t_uncond, noise_pred = torch.chunk(
self.model.apply_model(
torch.cat((x_next, x_next)), torch.cat((t, t)),
torch.cat((unconditional_conditioning, c))), 2)
noise_pred = e_t_uncond + unconditional_guidance_scale * (
noise_pred - e_t_uncond)
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
weighted_noise_pred = alphas_next[i].sqrt() * (
(1 / alphas_next[i] - 1).sqrt() -
(1 / alphas[i] - 1).sqrt()) * noise_pred
x_next = xt_weighted + weighted_noise_pred
if return_intermediates and i % (num_steps // return_intermediates
) == 0 and i < num_steps - 1:
intermediates.append(x_next)
inter_steps.append(i)
elif return_intermediates and i >= num_steps - 2:
intermediates.append(x_next)
inter_steps.append(i)
if callback:
callback(i)
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
if return_intermediates:
out.update({'intermediates': intermediates})
return x_next, out
@torch.no_grad()
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
# fast, but does not allow for exact reconstruction
# t serves as an index to gather the correct alphas
if use_original_steps:
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
else:
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
if noise is None:
noise = torch.randn_like(x0)
if t >= len(sqrt_alphas_cumprod):
return noise
return (
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) *
noise)
@torch.no_grad()
def decode(self,
x_latent,
cond,
t_start,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
use_original_steps=False,
callback=None):
timesteps = np.arange(self.ddpm_num_timesteps
) if use_original_steps else self.ddim_timesteps
timesteps = timesteps[:t_start]
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
print(f'Running DDIM Sampling with {total_steps} timesteps')
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
x_dec = x_latent
for i, step in enumerate(iterator):
index = total_steps - i - 1
ts = torch.full((x_latent.shape[0], ),
step,
device=x_latent.device,
dtype=torch.long)
x_dec, _ = self.p_sample_ddim(
x_dec,
cond,
ts,
index=index,
use_original_steps=use_original_steps,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning)
if callback:
callback(i)
return x_dec
def calc_mean_std(feat, eps=1e-5):
# eps is a small value added to the variance to avoid divide-by-zero.
size = feat.size()
assert (len(size) == 4)
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
assert (content_feat.size()[:2] == style_feat.size()[:2])
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat -
content_mean.expand(size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|