File size: 23,073 Bytes
251e479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2896183
 
251e479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2896183
251e479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2896183
 
251e479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
"""SAMPLING ONLY."""

# CrossAttn precision handling
import os

import einops
import numpy as np
import torch
from tqdm import tqdm

from ControlNet.ldm.modules.diffusionmodules.util import (
    extract_into_tensor, make_ddim_sampling_parameters, make_ddim_timesteps,
    noise_like)

_ATTN_PRECISION = os.environ.get('ATTN_PRECISION', 'fp32')

device = 'cuda' if torch.cuda.is_available() else 'cpu'


def register_attention_control(model, controller=None):

    def ca_forward(self, place_in_unet):

        def forward(x, context=None, mask=None):
            h = self.heads

            q = self.to_q(x)
            is_cross = context is not None
            context = context if is_cross else x
            context = controller(context, is_cross, place_in_unet)

            k = self.to_k(context)
            v = self.to_v(context)

            q, k, v = map(
                lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h),
                (q, k, v))

            # force cast to fp32 to avoid overflowing
            if _ATTN_PRECISION == 'fp32':
                with torch.autocast(enabled=False, device_type=device):
                    q, k = q.float(), k.float()
                    sim = torch.einsum('b i d, b j d -> b i j', q,
                                       k) * self.scale
            else:
                sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale

            del q, k

            if mask is not None:
                mask = einops.rearrange(mask, 'b ... -> b (...)')
                max_neg_value = -torch.finfo(sim.dtype).max
                mask = einops.repeat(mask, 'b j -> (b h) () j', h=h)
                sim.masked_fill_(~mask, max_neg_value)

            # attention, what we cannot get enough of
            sim = sim.softmax(dim=-1)

            out = torch.einsum('b i j, b j d -> b i d', sim, v)
            out = einops.rearrange(out, '(b h) n d -> b n (h d)', h=h)
            return self.to_out(out)

        return forward

    class DummyController:

        def __call__(self, *args):
            return args[0]

        def __init__(self):
            self.cur_step = 0

    if controller is None:
        controller = DummyController()

    def register_recr(net_, place_in_unet):
        if net_.__class__.__name__ == 'CrossAttention':
            net_.forward = ca_forward(net_, place_in_unet)
        elif hasattr(net_, 'children'):
            for net__ in net_.children():
                register_recr(net__, place_in_unet)

    sub_nets = model.named_children()
    for net in sub_nets:
        if 'input_blocks' in net[0]:
            register_recr(net[1], 'down')
        elif 'output_blocks' in net[0]:
            register_recr(net[1], 'up')
        elif 'middle_block' in net[0]:
            register_recr(net[1], 'mid')


class DDIMVSampler(object):

    def __init__(self, model, schedule='linear', **kwargs):
        super().__init__()
        self.model = model
        self.ddpm_num_timesteps = model.num_timesteps
        self.schedule = schedule

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
            if attr.device != torch.device(device):
                attr = attr.to(torch.device(device))
        setattr(self, name, attr)

    def make_schedule(self,
                      ddim_num_steps,
                      ddim_discretize='uniform',
                      ddim_eta=0.,
                      verbose=True):
        self.ddim_timesteps = make_ddim_timesteps(
            ddim_discr_method=ddim_discretize,
            num_ddim_timesteps=ddim_num_steps,
            num_ddpm_timesteps=self.ddpm_num_timesteps,
            verbose=verbose)
        alphas_cumprod = self.model.alphas_cumprod
        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, \
            'alphas have to be defined for each timestep'

        def to_torch(x):
            return x.clone().detach().to(torch.float32).to(self.model.device)

        self.register_buffer('betas', to_torch(self.model.betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev',
                             to_torch(self.model.alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod',
                             to_torch(np.sqrt(alphas_cumprod.cpu())))
        self.register_buffer('sqrt_one_minus_alphas_cumprod',
                             to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
        self.register_buffer('log_one_minus_alphas_cumprod',
                             to_torch(np.log(1. - alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recip_alphas_cumprod',
                             to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recipm1_alphas_cumprod',
                             to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))

        # ddim sampling parameters
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = \
            make_ddim_sampling_parameters(
                alphacums=alphas_cumprod.cpu(),
                ddim_timesteps=self.ddim_timesteps,
                eta=ddim_eta,
                verbose=verbose)
        self.register_buffer('ddim_sigmas', ddim_sigmas)
        self.register_buffer('ddim_alphas', ddim_alphas)
        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
        self.register_buffer('ddim_sqrt_one_minus_alphas',
                             np.sqrt(1. - ddim_alphas))
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) *
            (1 - self.alphas_cumprod / self.alphas_cumprod_prev))
        self.register_buffer('ddim_sigmas_for_original_num_steps',
                             sigmas_for_original_sampling_steps)

    @torch.no_grad()
    def sample(self,
               S,
               batch_size,
               shape,
               conditioning=None,
               callback=None,
               img_callback=None,
               quantize_x0=False,
               eta=0.,
               mask=None,
               x0=None,
               xtrg=None,
               noise_rescale=None,
               temperature=1.,
               noise_dropout=0.,
               score_corrector=None,
               corrector_kwargs=None,
               verbose=True,
               x_T=None,
               log_every_t=100,
               unconditional_guidance_scale=1.,
               unconditional_conditioning=None,
               dynamic_threshold=None,
               ucg_schedule=None,
               controller=None,
               strength=0.0,
               **kwargs):
        if conditioning is not None:
            if isinstance(conditioning, dict):
                ctmp = conditioning[list(conditioning.keys())[0]]
                while isinstance(ctmp, list):
                    ctmp = ctmp[0]
                cbs = ctmp.shape[0]
                if cbs != batch_size:
                    print(f'Warning: Got {cbs} conditionings'
                          f'but batch-size is {batch_size}')

            elif isinstance(conditioning, list):
                for ctmp in conditioning:
                    if ctmp.shape[0] != batch_size:
                        print(f'Warning: Got {cbs} conditionings'
                              f'but batch-size is {batch_size}')

            else:
                if conditioning.shape[0] != batch_size:
                    print(f'Warning: Got {conditioning.shape[0]}'
                          f'conditionings but batch-size is {batch_size}')

        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
        # sampling
        C, H, W = shape
        size = (batch_size, C, H, W)
        print(f'Data shape for DDIM sampling is {size}, eta {eta}')

        samples, intermediates = self.ddim_sampling(
            conditioning,
            size,
            callback=callback,
            img_callback=img_callback,
            quantize_denoised=quantize_x0,
            mask=mask,
            x0=x0,
            xtrg=xtrg,
            noise_rescale=noise_rescale,
            ddim_use_original_steps=False,
            noise_dropout=noise_dropout,
            temperature=temperature,
            score_corrector=score_corrector,
            corrector_kwargs=corrector_kwargs,
            x_T=x_T,
            log_every_t=log_every_t,
            unconditional_guidance_scale=unconditional_guidance_scale,
            unconditional_conditioning=unconditional_conditioning,
            dynamic_threshold=dynamic_threshold,
            ucg_schedule=ucg_schedule,
            controller=controller,
            strength=strength,
        )
        return samples, intermediates

    @torch.no_grad()
    def ddim_sampling(self,
                      cond,
                      shape,
                      x_T=None,
                      ddim_use_original_steps=False,
                      callback=None,
                      timesteps=None,
                      quantize_denoised=False,
                      mask=None,
                      x0=None,
                      xtrg=None,
                      noise_rescale=None,
                      img_callback=None,
                      log_every_t=100,
                      temperature=1.,
                      noise_dropout=0.,
                      score_corrector=None,
                      corrector_kwargs=None,
                      unconditional_guidance_scale=1.,
                      unconditional_conditioning=None,
                      dynamic_threshold=None,
                      ucg_schedule=None,
                      controller=None,
                      strength=0.0):

        if strength == 1 and x0 is not None:
            return x0, None

        register_attention_control(self.model.model.diffusion_model,
                                   controller)

        device = self.model.betas.device
        b = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=device)
        else:
            img = x_T

        if timesteps is None:
            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps \
                else self.ddim_timesteps
        elif timesteps is not None and not ddim_use_original_steps:
            subset_end = int(
                min(timesteps / self.ddim_timesteps.shape[0], 1) *
                self.ddim_timesteps.shape[0]) - 1
            timesteps = self.ddim_timesteps[:subset_end]

        intermediates = {'x_inter': [img], 'pred_x0': [img]}
        time_range = reversed(range(
            0, timesteps)) if ddim_use_original_steps else np.flip(timesteps)
        total_steps = timesteps if ddim_use_original_steps \
            else timesteps.shape[0]
        print(f'Running DDIM Sampling with {total_steps} timesteps')

        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
        if controller is not None:
            controller.set_total_step(total_steps)
        if mask is None:
            mask = [None] * total_steps

        dir_xt = 0
        for i, step in enumerate(iterator):
            if controller is not None:
                controller.set_step(i)
            index = total_steps - i - 1
            ts = torch.full((b, ), step, device=device, dtype=torch.long)

            if strength >= 0 and i == int(
                    total_steps * strength) and x0 is not None:
                img = self.model.q_sample(x0, ts)
            if mask is not None and xtrg is not None:
                # TODO: deterministic forward pass?
                if type(mask) == list:
                    weight = mask[i]
                else:
                    weight = mask
                if weight is not None:
                    rescale = torch.maximum(1. - weight, (1 - weight**2)**0.5 *
                                            controller.inner_strength)
                    if noise_rescale is not None:
                        rescale = (1. - weight) * (
                            1 - noise_rescale) + rescale * noise_rescale
                    img_ref = self.model.q_sample(xtrg, ts)
                    img = img_ref * weight + (1. - weight) * (
                        img - dir_xt) + rescale * dir_xt

            if ucg_schedule is not None:
                assert len(ucg_schedule) == len(time_range)
                unconditional_guidance_scale = ucg_schedule[i]

            outs = self.p_sample_ddim(
                img,
                cond,
                ts,
                index=index,
                use_original_steps=ddim_use_original_steps,
                quantize_denoised=quantize_denoised,
                temperature=temperature,
                noise_dropout=noise_dropout,
                score_corrector=score_corrector,
                corrector_kwargs=corrector_kwargs,
                unconditional_guidance_scale=unconditional_guidance_scale,
                unconditional_conditioning=unconditional_conditioning,
                dynamic_threshold=dynamic_threshold,
                controller=controller,
                return_dir=True)
            img, pred_x0, dir_xt = outs
            if callback:
                callback(i)
            if img_callback:
                img_callback(pred_x0, i)

            if index % log_every_t == 0 or index == total_steps - 1:
                intermediates['x_inter'].append(img)
                intermediates['pred_x0'].append(pred_x0)

        return img, intermediates

    @torch.no_grad()
    def p_sample_ddim(self,
                      x,
                      c,
                      t,
                      index,
                      repeat_noise=False,
                      use_original_steps=False,
                      quantize_denoised=False,
                      temperature=1.,
                      noise_dropout=0.,
                      score_corrector=None,
                      corrector_kwargs=None,
                      unconditional_guidance_scale=1.,
                      unconditional_conditioning=None,
                      dynamic_threshold=None,
                      controller=None,
                      return_dir=False):
        b, *_, device = *x.shape, x.device

        if unconditional_conditioning is None or \
                unconditional_guidance_scale == 1.:
            model_output = self.model.apply_model(x, t, c)
        else:
            model_t = self.model.apply_model(x, t, c)
            model_uncond = self.model.apply_model(x, t,
                                                  unconditional_conditioning)
            model_output = model_uncond + unconditional_guidance_scale * (
                model_t - model_uncond)

        if self.model.parameterization == 'v':
            e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
        else:
            e_t = model_output

        if score_corrector is not None:
            assert self.model.parameterization == 'eps', 'not implemented'
            e_t = score_corrector.modify_score(self.model, e_t, x, t, c,
                                               **corrector_kwargs)

        if use_original_steps:
            alphas = self.model.alphas_cumprod
            alphas_prev = self.model.alphas_cumprod_prev
            sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod
            sigmas = self.model.ddim_sigmas_for_original_num_steps
        else:
            alphas = self.ddim_alphas
            alphas_prev = self.ddim_alphas_prev
            sqrt_one_minus_alphas = self.ddim_sqrt_one_minus_alphas
            sigmas = self.ddim_sigmas

        # select parameters corresponding to the currently considered timestep
        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
        sqrt_one_minus_at = torch.full((b, 1, 1, 1),
                                       sqrt_one_minus_alphas[index],
                                       device=device)

        # current prediction for x_0
        if self.model.parameterization != 'v':
            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
        else:
            pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)

        if quantize_denoised:
            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)

        if dynamic_threshold is not None:
            raise NotImplementedError()
        '''
        if mask is not None and xtrg is not None:
            pred_x0 = xtrg * mask + (1. - mask) * pred_x0
        '''

        if controller is not None:
            pred_x0 = controller.update_x0(pred_x0)

        # direction pointing to x_t
        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
        noise = sigma_t * noise_like(x.shape, device,
                                     repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise

        if return_dir:
            return x_prev, pred_x0, dir_xt
        return x_prev, pred_x0

    @torch.no_grad()
    def encode(self,
               x0,
               c,
               t_enc,
               use_original_steps=False,
               return_intermediates=None,
               unconditional_guidance_scale=1.0,
               unconditional_conditioning=None,
               callback=None):
        timesteps = np.arange(self.ddpm_num_timesteps
                              ) if use_original_steps else self.ddim_timesteps
        num_reference_steps = timesteps.shape[0]

        assert t_enc <= num_reference_steps
        num_steps = t_enc

        if use_original_steps:
            alphas_next = self.alphas_cumprod[:num_steps]
            alphas = self.alphas_cumprod_prev[:num_steps]
        else:
            alphas_next = self.ddim_alphas[:num_steps]
            alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])

        x_next = x0
        intermediates = []
        inter_steps = []
        for i in tqdm(range(num_steps), desc='Encoding Image'):
            t = torch.full((x0.shape[0], ),
                           timesteps[i],
                           device=self.model.device,
                           dtype=torch.long)
            if unconditional_guidance_scale == 1.:
                noise_pred = self.model.apply_model(x_next, t, c)
            else:
                assert unconditional_conditioning is not None
                e_t_uncond, noise_pred = torch.chunk(
                    self.model.apply_model(
                        torch.cat((x_next, x_next)), torch.cat((t, t)),
                        torch.cat((unconditional_conditioning, c))), 2)
                noise_pred = e_t_uncond + unconditional_guidance_scale * (
                    noise_pred - e_t_uncond)
            xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
            weighted_noise_pred = alphas_next[i].sqrt() * (
                (1 / alphas_next[i] - 1).sqrt() -
                (1 / alphas[i] - 1).sqrt()) * noise_pred
            x_next = xt_weighted + weighted_noise_pred
            if return_intermediates and i % (num_steps // return_intermediates
                                             ) == 0 and i < num_steps - 1:
                intermediates.append(x_next)
                inter_steps.append(i)
            elif return_intermediates and i >= num_steps - 2:
                intermediates.append(x_next)
                inter_steps.append(i)
            if callback:
                callback(i)

        out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
        if return_intermediates:
            out.update({'intermediates': intermediates})
        return x_next, out

    @torch.no_grad()
    def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
        # fast, but does not allow for exact reconstruction
        # t serves as an index to gather the correct alphas
        if use_original_steps:
            sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
            sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
        else:
            sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
            sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas

        if noise is None:
            noise = torch.randn_like(x0)
        if t >= len(sqrt_alphas_cumprod):
            return noise
        return (
            extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
            extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) *
            noise)

    @torch.no_grad()
    def decode(self,
               x_latent,
               cond,
               t_start,
               unconditional_guidance_scale=1.0,
               unconditional_conditioning=None,
               use_original_steps=False,
               callback=None):

        timesteps = np.arange(self.ddpm_num_timesteps
                              ) if use_original_steps else self.ddim_timesteps
        timesteps = timesteps[:t_start]

        time_range = np.flip(timesteps)
        total_steps = timesteps.shape[0]
        print(f'Running DDIM Sampling with {total_steps} timesteps')

        iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
        x_dec = x_latent
        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full((x_latent.shape[0], ),
                            step,
                            device=x_latent.device,
                            dtype=torch.long)
            x_dec, _ = self.p_sample_ddim(
                x_dec,
                cond,
                ts,
                index=index,
                use_original_steps=use_original_steps,
                unconditional_guidance_scale=unconditional_guidance_scale,
                unconditional_conditioning=unconditional_conditioning)
            if callback:
                callback(i)
        return x_dec


def calc_mean_std(feat, eps=1e-5):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    assert (len(size) == 4)
    N, C = size[:2]
    feat_var = feat.view(N, C, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(N, C, 1, 1)
    feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
    return feat_mean, feat_std


def adaptive_instance_normalization(content_feat, style_feat):
    assert (content_feat.size()[:2] == style_feat.size()[:2])
    size = content_feat.size()
    style_mean, style_std = calc_mean_std(style_feat)
    content_mean, content_std = calc_mean_std(content_feat)

    normalized_feat = (content_feat -
                       content_mean.expand(size)) / content_std.expand(size)
    return normalized_feat * style_std.expand(size) + style_mean.expand(size)