Spaces:
Sleeping
Sleeping
File size: 14,171 Bytes
1de9c91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import sklearn
from tenacity import retry, stop_after_attempt, wait_random_exponential
from tqdm import tqdm
import sys
# import openai
import time
# import pandas as pd
import random
import csv
import os
import pickle
import json
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
import tiktoken
from sklearn.feature_extraction.text import CountVectorizer
from collections import Counter
import math
import io
import contextlib
# os.system('pip install pandas reportlab')
# os.system('pip install openai==0.27.2')
# os.system('pip install tenacity')
import requests
from bs4 import BeautifulSoup
import ast
import nltk
nltk.download('punkt')
nltk.download('stopwords')
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
import string
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import numpy as np
import evaluate
def tree_edit_distance(tree1, tree2):
def cost(node1, node2):
""" Cost to transform node1 to node2 """
if node1 == node2:
return 0
return 1
def tree_size(tree):
""" Calculate the size of the tree """
if not isinstance(tree, list) or not tree:
return 1
return 1 + sum(tree_size(child) for child in tree)
def ted(tree1, tree2):
""" Compute tree edit distance between two trees """
if not isinstance(tree1, list) and not isinstance(tree2, list):
return cost(tree1, tree2)
if not isinstance(tree1, list):
return tree_size(tree2)
if not isinstance(tree2, list):
return tree_size(tree1)
if not tree1 and not tree2:
return 0
if not tree1:
return sum(tree_size(child) for child in tree2)
if not tree2:
return sum(tree_size(child) for child in tree1)
dp = [[0] * (len(tree2) + 1) for _ in range(len(tree1) + 1)]
for i in range(1, len(tree1) + 1):
dp[i][0] = dp[i-1][0] + tree_size(tree1[i-1])
for j in range(1, len(tree2) + 1):
dp[0][j] = dp[0][j-1] + tree_size(tree2[j-1])
for i in range(1, len(tree1) + 1):
for j in range(1, len(tree2) + 1):
dp[i][j] = min(dp[i-1][j] + tree_size(tree1[i-1]),
dp[i][j-1] + tree_size(tree2[j-1]),
dp[i-1][j-1] + ted(tree1[i-1], tree2[j-1]))
return dp[len(tree1)][len(tree2)]
return ted(tree1, tree2)
def preprocess_code_str(code_str):
prefix = "citation_bracket = {}\nsentence = {}\n"
code_str = code_str.replace(" ", "")
code_lines = code_str.split("\n")
code_line_list = []
for line in code_lines:
if "citation_bracket[" in line.split("=")[0]:
code_line_list.append(line)
if "sentence[" in line.split("=")[0]:
code_line_list.append(line)
return prefix + "\n".join(code_line_list) + "\nprint(sentence)"
def run_code(code_str):
# Redirect stdout to capture print statements
f = io.StringIO()
with contextlib.redirect_stdout(f):
exec(preprocess_code_str(code_str))
# Get the standard output
output = f.getvalue()
return ast.literal_eval(output)
def replace_with_char(input_list, char='a'):
def replace_in_nested_list(nested_list):
if isinstance(nested_list, list):
return [replace_in_nested_list(item) for item in nested_list]
else:
return char
return replace_in_nested_list(input_list)
def top_k_keys(input_dict, k):
# Sort the dictionary items by value in descending order and extract the keys
sorted_keys = sorted(input_dict, key=input_dict.get, reverse=True)
# Return the top-k keys
return sorted_keys[:k]
def keys_with_least_k_values(d, k):
if k <= 0:
return []
# Get the sorted list of (key, value) tuples based on the values
sorted_items = sorted(d.items(), key=lambda item: item[1])
# Extract the keys of the first k items
least_k_keys = [item[0] for item in sorted_items[:k]]
return least_k_keys
def edit_distance_code_str(code1, code2, just_tree_structure=False):
# code1 = preprocess_code_str(code1)
# code2 = preprocess_code_str(code2)
sentence1 = run_code(code1)
list_1 = [sentence1[key] for key in sentence1]
sentence2 = run_code(code2)
list_2 = [sentence2[key] for key in sentence2]
if just_tree_structure:
list_1 = replace_with_char(list_1)
list_2 = replace_with_char(list_2)
return tree_edit_distance(list_1, list_2)
class eval_metrics:
def __init__(self):
pass
# if is_bertscore:
# pass
def get_rouge_l(self, pred, refs):
rouge = evaluate.load('rouge')
results = rouge.compute(predictions=pred, references=refs)
return results['rougeL']
def get_bleu(self, pred, refs):
bleu = evaluate.load('bleu')
tmp_refs = [[item] for item in refs]
results = bleu.compute(predictions=pred, references=tmp_refs)
return results['bleu']
def get_meteor(self, pred, refs):
meteor = evaluate.load('meteor')
results = meteor.compute(predictions=pred, references=refs)
return results['meteor']
def get_bertscore(self, pred, refs):
bertscore = evaluate.load('bertscore')
results = bertscore.compute(predictions=pred, references=refs, lang = "en")
return np.mean(results['f1'])
def get_bleurt(self, pred, refs):
bleurt = evaluate.load('bleurt', module_type="metric")
# tmp_refs = [[item] for item in refs]
results = bleurt.compute(predictions=pred, references=refs)
return np.mean(results['scores'])
class BM25:
def __init__(self, documents, k1=1.5, b=0.75):
self.documents = documents
self.k1 = k1
self.b = b
self.vectorizer = CountVectorizer().fit(documents)
self.doc_term_matrix = self.vectorizer.transform(documents)
self.doc_lengths = np.array(self.doc_term_matrix.sum(axis=1)).flatten()
self.avg_doc_length = np.mean(self.doc_lengths)
self.df = np.diff(self.doc_term_matrix.tocsc().indptr)
self.idf = self.compute_idf()
def compute_idf(self):
N = len(self.documents)
idf = np.log((N - self.df + 0.5) / (self.df + 0.5) + 1)
return idf
def compute_bm25(self, query):
query_vec = self.vectorizer.transform([query])
scores = []
for doc_idx in range(self.doc_term_matrix.shape[0]):
score = 0
for term_idx in query_vec.indices:
if term_idx in self.doc_term_matrix[doc_idx].indices:
tf = self.doc_term_matrix[doc_idx, term_idx]
idf = self.idf[term_idx]
numerator = tf * (self.k1 + 1)
denominator = tf + self.k1 * (1 - self.b + self.b * (self.doc_lengths[doc_idx] / self.avg_doc_length))
score += idf * numerator / denominator
scores.append(score)
return scores
def get_top_k(self, query, k=5):
scores = self.compute_bm25(query)
top_k_indices = np.argsort(scores)[::-1][:k]
top_k_docs = [self.documents[i] for i in top_k_indices]
return top_k_docs, top_k_indices
def get_nmis(true_dict, pred_dict):
labels_true = []
labels_pred = []
# print(true_dict.keys())
# print(pred_dict.keys())
# print()
for key in true_dict:
labels_true.append(true_dict[key])
if key not in pred_dict:
labels_pred.append(-1)
else:
labels_pred.append(pred_dict[key])
if len(labels_pred) == 0:
max_label_pred = 0
else:
max_label_pred = np.max(labels_pred) + 1
for label_idx, item in enumerate(labels_pred):
if item==-1:
labels_pred[label_idx] = max_label_pred
max_label_pred+=1
return sklearn.metrics.normalized_mutual_info_score(labels_true=labels_true, labels_pred=labels_pred), sklearn.metrics.adjusted_mutual_info_score(labels_true=labels_true, labels_pred=labels_pred)
def calculate_precision_recall_f1(predicted, ground_truth):
# print(predicted)
# print()
# print(ground_truth)
# print("-------------")
# Convert lists to sets to handle duplicates and perform set operations
predicted_set = set(predicted)
ground_truth_set = set(ground_truth)
# Calculate true positives (intersection of predicted and ground truth)
true_positives = predicted_set.intersection(ground_truth_set)
# Calculate precision
precision = len(true_positives) / len(predicted_set) if predicted_set else 0
# Calculate recall
recall = len(true_positives) / len(ground_truth_set) if ground_truth_set else 0
# Calculate F1-score
if precision + recall == 0:
f1_score = 0
else:
f1_score = 2 * (precision * recall) / (precision + recall)
return precision, recall, f1_score
def get_introduction(arxiv_id):
# Step 1: Construct the URL
url = f"https://ar5iv.org/html/{arxiv_id}"
# Step 2: Fetch the HTML content of the page
response = requests.get(url)
if response.status_code != 200:
raise Exception(f"Failed to fetch the page: Status code {response.status_code}")
# Step 3: Parse the HTML content
soup = BeautifulSoup(response.content, 'html.parser')
# Step 4: Locate the introduction section
# We assume the introduction is the first section after the abstract
# This heuristic might need adjustment depending on the exact structure of the paper
introduction_text = ""
found_introduction = False
# Look for h2 tags which usually denote sections
for tag in soup.find_all(['h2', 'h3']):
# print(tag.text.lower())
if 'introduction' in tag.text.lower():
# print(tag.text)
introduction_text += tag.text.strip() + "\n\n"
next_node = tag.find_next_sibling()
while next_node and next_node.name not in ['h2', 'h3']:
introduction_text += next_node.get_text().strip() + "\n\n"
next_node = next_node.find_next_sibling()
break
return introduction_text
def write_to_file(filepath, content):
if '.txt' in filepath:
with open(filepath, 'w') as fw:
fw.write(content)
elif '.json' in filepath:
with open(filepath, 'w') as fw:
json.dump(content, fw)
elif '.pickle' in filepath or '.pkl' in filepath:
with open(filepath, 'wb') as fw:
pickle.dump(content, fw)
elif '.npy' in filepath:
np.save(filepath, content)
def read_from_file(filepath):
if '.txt' in filepath:
with open(filepath, 'r') as fr:
return fr.read()
elif '.json' in filepath:
with open(filepath, 'r') as fr:
return json.load(fr)
elif '.pickle' in filepath or '.pkl' in filepath:
with open(filepath, 'rb') as fr:
return pickle.load(fr)
elif '.npy' in filepath:
return np.load(filepath)
def remove_stopwords_and_punctuation(text):
# Get the list of stopwords
stop_words = set(stopwords.words('english'))
# Remove punctuation from text
text = text.translate(str.maketrans('', '', string.punctuation.replace('_', '').replace('@', '')))
# Split the text into words
words = text.split()
# Remove stopwords
filtered_words = [word for word in words if word.lower() not in stop_words]
# Join the words back into a single string
filtered_text = ' '.join(filtered_words)
return filtered_text
class AzureModels:
def __init__(self, model_name):
if model_name == "gpt4":
DEPLOYMENT_NAME = "gentech-gpt4-research"
BASE_URL = "https://gentechworkbench-stage.openai.azure.com/"
API_KEY = "f074d7f2bfdf486783db5f4605b263a6"
self.model = AzureChatOpenAI(
openai_api_base=BASE_URL,
openai_api_version="2023-03-15-preview",
deployment_name=DEPLOYMENT_NAME,
openai_api_key=API_KEY,
openai_api_type="azure",
)
self.enc = tiktoken.encoding_for_model("gpt-4-0314")
elif model_name == "gpt4o":
DEPLOYMENT_NAME = "gpt-4o"
BASE_URL = "https://docexpresearch.openai.azure.com/"
API_KEY = "2d6dc256edd94e65a2fa4b5658651377"
self.model = AzureChatOpenAI(
openai_api_base=BASE_URL,
openai_api_version="2023-07-01-preview",
deployment_name=DEPLOYMENT_NAME,
openai_api_key=API_KEY,
openai_api_type="azure",
)
self.enc = tiktoken.encoding_for_model("gpt-4o")
@retry(wait=wait_random_exponential(min=30, max=80), stop=stop_after_attempt(5))
def get_completion(self, question, max_tokens, stop=None):
gpt_answer = self.model(
[
HumanMessage(
content=question
)
], max_tokens = max_tokens, stop=stop
)
gpt_answer_content = gpt_answer.content # Access the content attribute
# Convert the answer_content to string datatype
if isinstance(gpt_answer_content, str):
gpt_answer_string = gpt_answer_content # If the content is already a string, use it directly
else:
gpt_answer_string = str(gpt_answer_content) # Convert to string if it's not already a string
return gpt_answer_string
def get_num_inp_tokens(self, inp):
tokens = self.enc.encode(inp)
return len(tokens)
|