File size: 17,950 Bytes
1de9c91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
from tenacity import retry, stop_after_attempt, wait_random_exponential
from tqdm import tqdm
import time
import sys

# MODEL_NAME = str(sys.argv[1])
# num_shots = int(sys.argv[2])
# method = str(sys.argv[3]) #['fixed', 'random', 'bm25']

# ADDED K-SHOT SETTING, WHERE K IS VARIABLE

# import openai
import time
# import pandas as pd
import random
random.seed(1)

import csv
import os
import pickle
import json
import nltk
nltk.download('punkt')
nltk.download('stopwords')
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
import string

from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
import tiktoken

import re
from nltk.tokenize import sent_tokenize
from collections import defaultdict


import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import numpy as np

# Get the parent directory
# parent_dir = "/home/abnandy/sensei-fs-link"#os.path.abspath(os.path.join(os.getcwd(), os.pardir))
# Add the parent directory to the system path
# sys.path.append(parent_dir)

from utils import AzureModels, write_to_file, read_from_file
# from utils_open import OpenModels

def remove_stopwords_and_punctuation(text):
    # Get the list of stopwords
    stop_words = set(stopwords.words('english'))
    
    # Remove punctuation from text
    text = text.translate(str.maketrans('', '', string.punctuation.replace('_', '').replace('@', '')))
    
    # Split the text into words
    words = text.split()
    
    # Remove stopwords
    filtered_words = [word for word in words if word.lower() not in stop_words]
    
    # Join the words back into a single string
    filtered_text = ' '.join(filtered_words)
    
    return filtered_text

def get_key(list_):
    tmp_str = '@cite'
    for item in list_:
        tmp_str+=item.replace('@cite', '')
    return tmp_str

def group_citations(key):
    list_ = ["@cite_" + item for item in key.replace("@cite_", "").split("_")]
    return ", ".join(list_)

def code_to_extra_info(code_str):
    citation_bracket_keys = []
    sentence_keys = []
    code_lines = code_str.split("\n")
    for line in code_lines:
        if "citation_bracket[" in line.split("=")[0]:
            citation_bracket_keys.append(line.split("=")[0].split('citation_bracket["')[-1].split('"]')[0])
        if "sentence[" in line.split("=")[0]:
            sentence_keys.append(line.split("=")[0].split('sentence["')[-1].split('"]')[0])

    cb_template = "{} are in the same citation bracket (i.e., they are right next to each other) within the section of the Wikipedia Article."
    sent_template = "{} are in the same sentence within the section of the Wikipedia Article."
    
    cb_list = [cb_template.format(group_citations(key)) for key in citation_bracket_keys if key.count("_")>1]
    sent_list = [sent_template.format(group_citations(key)) for key in sentence_keys if key.count("_")>1]

    if len(cb_list) + len(sent_list) == 0:
        return ""
    return_str = "\n\nNOTE THAT -\n\n" + "\n".join(cb_list) + "\n\n" + "\n".join(sent_list)

    return return_str

def get_code_str(related_work, reference_dict):
    # print(reference_dict.keys())
    citation_bracket_code_lines = []
    sentence_code_lines = []
    
    # Tokenize the related work into sentences
    sentences = sent_tokenize(related_work)
    
    # Get all citation tags from the reference_dict
    citation_tags = list(reference_dict.keys())

    
    for sentence in sentences:
        tmp_sentence_list = []
        parts = remove_stopwords_and_punctuation(sentence).split(' ')
        cb_list = []
        str_cb_list = []
        
        # print(parts)
        # print(reference_dict.keys())
        # print(1/0)
        
        for word in parts:
            if word in reference_dict:
                cb_list.append(word)
                str_cb_list.append('"' + word + '"')
            else:
                if len(cb_list)>0:
                    # print(cb_list)
                    citation_bracket_code_lines.append('citation_bracket["{}"] = {}'.format(get_key(cb_list), str(str_cb_list)))
                    tmp_sentence_list.append(get_key(cb_list))
                    cb_list = []
                    str_cb_list = []

        if len(cb_list) > 0:
            citation_bracket_code_lines.append('citation_bracket["{}"] = {}'.format(get_key(cb_list), str(str_cb_list)))
            tmp_sentence_list.append(get_key(cb_list))
            cb_list = []
            str_cb_list = []

        tmp_values = []
        for key in tmp_sentence_list:
            tmp_values.append('citation_bracket["{}"]'.format(key))
        if len(tmp_values) > 0:
            sentence_code_lines.append('sentence["{}"] = {}'.format(get_key(tmp_sentence_list), str(tmp_values)))

    return "        " + "\n        ".join(citation_bracket_code_lines).replace("'", "") + "\n\n        " + "\n        ".join(sentence_code_lines).replace("'", "")

def get_prompt(list_, i, prompt_template):
    gt_summary = list_[i]['related_work'].strip()
    inp_intent = list_[i]['abstract'].strip()

    input_code_str = "    "
    input_code_list = []
    
    # print(sent_tokenize(gt_summary))
    # print()
    
    # print(1/0)
    tmp_list = list_[i]['ref_abstract']
    # abstract_list = []
    # cite_tags = []
    abstract_dict = {}
    # write_to_file("dummy.json", tmp_list)
    for key in tmp_list:
        abstract_dict[key] = tmp_list[key]['abstract'].strip()
    for key in abstract_dict:
        input_code_list.append('reference_articles["{}"] = "{}"'.format(key, abstract_dict[key]))
    input_code_list.append('intent = "{}"'.format(inp_intent))
    input_code_str += "\n    ".join(input_code_list)
    code_str = get_code_str(gt_summary, tmp_list)
    prompt = prompt_template.format(input_code_str)    
    return gt_summary, prompt, code_str

def preprocess_retrieved_out(tmp_keys, out):
    new_dict = {}
    for key in tmp_keys:
        for line in out.split("\n"):
            if key in line:
                summ_doc = line.split(":", 1)[-1].strip()
                new_dict[key] = {"abstract": summ_doc}
                print(key)
                print(summ_doc)
                print()
                break
    return new_dict

def get_slide(topic, text):
    slide_prompt = '''Convert this text into more structured text (in markdown) that can be put into the content of a slide in a presentation (e.g. use bullet points, numbered points, proper layout, etc.). Also, the include the topic "{}" of the slide. -
    
{}'''
    azure_models = AzureModels("gpt4o")
    slide_prompt = slide_prompt.format(topic, text)
    out_ = azure_models.get_completion(slide_prompt, 100)
    time.sleep(2)
    return out_

def get_retrieved_results(MODEL_NAME, num_shots, method, train_list, test_list, code=False, organize_out=None):    
    response_template = ''
    instruction_template = ''

    final_dict = {}

    pred_dict = {}
    start_idx = 0

    icl_extra_info = ""
    test_extra_info = ""
    
    if 'gpt4' in MODEL_NAME:
        azure_models = AzureModels(MODEL_NAME)
    else:
        if code:
            instruction_template = '''Below is an instruction that describes a task. Write a response that appropriately completes the request.
        
        ### Instruction:
        '''
            response_template = '### Response:\n'            
        else:
            response_template = '### Assistant: '
        if MODEL_NAME=='gemma2b':
            model_id = "google/gemma-2b-it"
        elif MODEL_NAME=='gemma7b':
            model_id = "google/gemma-7b-it"
        elif MODEL_NAME=='mistral7b':
            model_id = "mistralai/Mistral-7B-Instruct-v0.3"
        elif MODEL_NAME=="llama7b":
            model_id = "meta-llama/Llama-2-7b-chat-hf"
        elif MODEL_NAME=="llama13b":
            model_id = "meta-llama/Llama-2-13b-chat-hf"
        elif MODEL_NAME=="llama3":
            model_id="meta-llama/Meta-Llama-3-8B-Instruct"        
        elif MODEL_NAME=="galactica7b":
            model_id = "facebook/galactica-6.7b"
        open_models = OpenModels(model_id)
    
    prompt_template = '''Given are a set of articles referenced in a Wikipedia Article, and the intent -
    
    Reference Articles:
    {}
    
    Intent:
    {}
    
    Summarize each reference article (generate in the format "@cite_K : <SUMMARIZED CONTENT CORREPONDING TO @cite_K>", each in a new line, where @cite_K represents each of the following citation/reference tags - {}, given in Reference Articles), given the reference articles as documents, and the intent.{}
    
    {}Answer: '''

    if organize_out!=None:
        prompt_template = '''Given are a set of articles referenced in a Wikipedia Article, and the intent -
        
        Reference Articles:
        {}
        
        Intent:
        {}
        
        Generate the wikipedia article section in 100-200 words based on the intent as an intent-based multi-document summary, given the reference articles as documents, and the intent.{}
        
        {}Answer: '''        

    if code:
        prompt_template = '''def main():
            # Given is a dictionary of articles that are referenced in a section of the Wikipedia Article, and the intent -
        
            reference_articles = dict()
        
        {}'''        
    
    if method == 'bm25':
        retrieve_dict = read_from_file("bm25_10_icl_samples_50_holdout_samples.json")
    elif method == "gat":
        retrieve_dict = read_from_file("gat_20_icl_samples_50_holdout_samples.json")            
    
    #len(test_list))):
    
    icl_train_indices = [0,1]


    if code:
        for i in tqdm(range(start_idx, len(test_list))):#start_idx, len(test_list))):
            if len(test_list[i]['ref_abstract']) > 1:
        
                full_icl_prompt = ""
        
                hier_cluster_prompt = "\n    def hierarchical_clustering():\n        # Hierarchical Clustering of references within a section of the Wikipedia Article, based on the reference articles and the intent\n        citation_bracket = {} # This dictionary contains lists as values that shows how references are grouped within the same citation bracket in the section of the Wikipedia Article\n        sentence = {} # This dictionary contains lists, where each list contains references in a sentence in the section of the Wikipedia Article\n\n"        
        
                if num_shots > 0:
        
                    if method == "random":
                        icl_train_indices = random.sample(holdout_indices, num_shots)#random.sample(np.arange(len(train_list)).tolist())
                    elif (method == "bm25") or (method == "gat"):
                        icl_train_indices = [int(retrieve_dict[str(i)][j]) for j in range(num_shots)]
                    elif method == 'fixed':
                        icl_train_indices = icl_train_indices[:num_shots]
        
                    for enum_idx, icl_train_idx in enumerate(icl_train_indices):
                        
                        # Fixed ICL Sample
                        icl_gt_summary, icl_prompt, icl_code_str = get_prompt(train_list, icl_train_idx, prompt_template) # this particular example has 6 citations
                        # icl_gt_summary_2, icl_prompt_2, icl_code_str_2 = get_prompt(train_list, 85) # this particular example has 12 citations, 4 of which are missing
        
                        full_icl_prompt += "##Example {}:\n\n".format(enum_idx + 1) + instruction_template + icl_prompt + hier_cluster_prompt + icl_code_str + "\n\n"
        
                    full_icl_prompt += "##Example {}:\n\n".format(num_shots+1)
                
                gt_summary, prompt, code_str = get_prompt(test_list, i, prompt_template)
        
                
                
                
                # full_icl_prompt_2 = "##Example 2:\n\n" + icl_prompt_2 + hier_cluster_prompt + icl_code_str_2
                
                final_prompt = full_icl_prompt + instruction_template + prompt + hier_cluster_prompt + "        # only generate the code that comes after this, as if you are on autocomplete mode\n" + response_template
                
                # final_prompt = full_icl_prompt + "\n\n" + full_icl_prompt_2 + "\n\n" + prompt
                
                # final_prompt = full_icl_prompt + "\n\n" + prompt
                
                # print(get_num_inp_tokens(final_prompt))
                # print(gt_summary)
                # print("---------")
                # print(final_prompt)
                # print("---------")
                # print("GT:")
                # print(code_str)
                # print("---------")
        
                max_tokens = 500
        
                if 'gpt4' in MODEL_NAME:
                    out_ = azure_models.get_completion(final_prompt, max_tokens)
                    time.sleep(2)
                else:
                    out_ = open_models.open_completion(final_prompt, max_tokens, stop_token="##Example {}".format(num_shots + 2))
        
                # print("Predicted:")
                # print(out_)
        
                final_dict[i] = out_
        
        return final_dict    
        
                # write_to_file(save_filepath, final_dict)

    
    else:
        if organize_out==None:
            tmp_max_tok_len=1000
        else:
            tmp_max_tok_len=300
        
    
        for i in tqdm(range(start_idx, len(test_list))):#len(test_list))):
            if len(test_list[i]['ref_abstract']) > 1:
                
                icl_prompt = ""
        
                if num_shots > 0:
        
                    if method == "random":
                        icl_train_indices = random.sample(holdout_indices, num_shots)#random.sample(np.arange(len(train_list)).tolist())
                    elif method == "bm25":
                        icl_train_indices = [int(retrieve_dict[str(i)][j]) for j in range(num_shots)]
                    elif method == 'fixed':
                        icl_train_indices = icl_train_indices[:num_shots]        
            
                    for enum_idx, icl_train_idx in enumerate(icl_train_indices):
                        icl_tmp_list = train_list[icl_train_idx]['ref_abstract']
                        icl_inp_intent = train_list[icl_train_idx]['abstract']
                        icl_gt_summary = train_list[icl_train_idx]['related_work']

                        if organize_out!=None:
                            icl_code_str = get_code_str(icl_gt_summary, icl_tmp_list)
                            icl_extra_info = code_to_extra_info(icl_code_str)                        
                        
                        icl_abstract_dict = {}
                        
                        for key in icl_tmp_list:
                            if organize_out==None:
                                icl_abstract_dict[key] = icl_tmp_list[key]#['abstract']      
                            else:
                                icl_abstract_dict[key] = icl_tmp_list[key]['abstract']      
                            
                        icl_abstract_list = [key + " : " + icl_abstract_dict[key] for key in icl_abstract_dict]
                                
                        icl_paper_abstracts = "\n".join(icl_abstract_list)
                        
                        icl_prompt += "##Example {}:\n\n".format(enum_idx + 1) + prompt_template.format(icl_paper_abstracts, icl_inp_intent, " ".join(list(icl_tmp_list.keys())), icl_extra_info, response_template) + icl_gt_summary.strip() + "\n\n"
            
                    icl_prompt += "##Example {}:\n\n".format(num_shots+1)
                
                gt_summary = test_list[i]['related_work']
                inp_intent = test_list[i]['abstract']
                if organize_out!=None:
                    test_code_str = organize_out[str(i)]
                    test_extra_info = code_to_extra_info(test_code_str)                
                
                # print(sent_tokenize(gt_summary))
                # print()
                
                # print(1/0)
                tmp_list = test_list[i]['ref_abstract']
                # abstract_list = []
                # cite_tags = []
                abstract_dict = {}
                for key in tmp_list:
                    if organize_out==None:
                        abstract_dict[key] = tmp_list[key]#['abstract']      
                    else:
                        abstract_dict[key] = tmp_list[key]['abstract']      
                    
                abstract_list = [key + " : " + abstract_dict[key] for key in abstract_dict]
                        
                paper_abstracts = "\n".join(abstract_list)
                        
                prompt = prompt_template.format(paper_abstracts, inp_intent, " ".join(list(tmp_list.keys())), test_extra_info, response_template)
        
                # if num_shots == 1:
                prompt = icl_prompt + prompt
                
                # print(prompt)
                # print("-----------")
                
                if 'gpt4' in MODEL_NAME:
                    out_ = azure_models.get_completion(prompt, tmp_max_tok_len)
                    time.sleep(2)
                else:
                    # try:
                    out_ = open_models.open_completion(prompt, tmp_max_tok_len, temperature=0.7)

                if organize_out==None:
                    test_list[i]["ref_abstract"] = preprocess_retrieved_out(tmp_list, out_)
                else:
                    pred_dict[i] = out_
                
        
        # return pred_dict
        # write_to_file("retrieved_docs.json", test_list)
        if organize_out==None:
            return test_list
        else:
            return pred_dict