Spaces:
Sleeping
Sleeping
File size: 17,950 Bytes
1de9c91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
from tenacity import retry, stop_after_attempt, wait_random_exponential
from tqdm import tqdm
import time
import sys
# MODEL_NAME = str(sys.argv[1])
# num_shots = int(sys.argv[2])
# method = str(sys.argv[3]) #['fixed', 'random', 'bm25']
# ADDED K-SHOT SETTING, WHERE K IS VARIABLE
# import openai
import time
# import pandas as pd
import random
random.seed(1)
import csv
import os
import pickle
import json
import nltk
nltk.download('punkt')
nltk.download('stopwords')
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
import string
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
import tiktoken
import re
from nltk.tokenize import sent_tokenize
from collections import defaultdict
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import numpy as np
# Get the parent directory
# parent_dir = "/home/abnandy/sensei-fs-link"#os.path.abspath(os.path.join(os.getcwd(), os.pardir))
# Add the parent directory to the system path
# sys.path.append(parent_dir)
from utils import AzureModels, write_to_file, read_from_file
# from utils_open import OpenModels
def remove_stopwords_and_punctuation(text):
# Get the list of stopwords
stop_words = set(stopwords.words('english'))
# Remove punctuation from text
text = text.translate(str.maketrans('', '', string.punctuation.replace('_', '').replace('@', '')))
# Split the text into words
words = text.split()
# Remove stopwords
filtered_words = [word for word in words if word.lower() not in stop_words]
# Join the words back into a single string
filtered_text = ' '.join(filtered_words)
return filtered_text
def get_key(list_):
tmp_str = '@cite'
for item in list_:
tmp_str+=item.replace('@cite', '')
return tmp_str
def group_citations(key):
list_ = ["@cite_" + item for item in key.replace("@cite_", "").split("_")]
return ", ".join(list_)
def code_to_extra_info(code_str):
citation_bracket_keys = []
sentence_keys = []
code_lines = code_str.split("\n")
for line in code_lines:
if "citation_bracket[" in line.split("=")[0]:
citation_bracket_keys.append(line.split("=")[0].split('citation_bracket["')[-1].split('"]')[0])
if "sentence[" in line.split("=")[0]:
sentence_keys.append(line.split("=")[0].split('sentence["')[-1].split('"]')[0])
cb_template = "{} are in the same citation bracket (i.e., they are right next to each other) within the section of the Wikipedia Article."
sent_template = "{} are in the same sentence within the section of the Wikipedia Article."
cb_list = [cb_template.format(group_citations(key)) for key in citation_bracket_keys if key.count("_")>1]
sent_list = [sent_template.format(group_citations(key)) for key in sentence_keys if key.count("_")>1]
if len(cb_list) + len(sent_list) == 0:
return ""
return_str = "\n\nNOTE THAT -\n\n" + "\n".join(cb_list) + "\n\n" + "\n".join(sent_list)
return return_str
def get_code_str(related_work, reference_dict):
# print(reference_dict.keys())
citation_bracket_code_lines = []
sentence_code_lines = []
# Tokenize the related work into sentences
sentences = sent_tokenize(related_work)
# Get all citation tags from the reference_dict
citation_tags = list(reference_dict.keys())
for sentence in sentences:
tmp_sentence_list = []
parts = remove_stopwords_and_punctuation(sentence).split(' ')
cb_list = []
str_cb_list = []
# print(parts)
# print(reference_dict.keys())
# print(1/0)
for word in parts:
if word in reference_dict:
cb_list.append(word)
str_cb_list.append('"' + word + '"')
else:
if len(cb_list)>0:
# print(cb_list)
citation_bracket_code_lines.append('citation_bracket["{}"] = {}'.format(get_key(cb_list), str(str_cb_list)))
tmp_sentence_list.append(get_key(cb_list))
cb_list = []
str_cb_list = []
if len(cb_list) > 0:
citation_bracket_code_lines.append('citation_bracket["{}"] = {}'.format(get_key(cb_list), str(str_cb_list)))
tmp_sentence_list.append(get_key(cb_list))
cb_list = []
str_cb_list = []
tmp_values = []
for key in tmp_sentence_list:
tmp_values.append('citation_bracket["{}"]'.format(key))
if len(tmp_values) > 0:
sentence_code_lines.append('sentence["{}"] = {}'.format(get_key(tmp_sentence_list), str(tmp_values)))
return " " + "\n ".join(citation_bracket_code_lines).replace("'", "") + "\n\n " + "\n ".join(sentence_code_lines).replace("'", "")
def get_prompt(list_, i, prompt_template):
gt_summary = list_[i]['related_work'].strip()
inp_intent = list_[i]['abstract'].strip()
input_code_str = " "
input_code_list = []
# print(sent_tokenize(gt_summary))
# print()
# print(1/0)
tmp_list = list_[i]['ref_abstract']
# abstract_list = []
# cite_tags = []
abstract_dict = {}
# write_to_file("dummy.json", tmp_list)
for key in tmp_list:
abstract_dict[key] = tmp_list[key]['abstract'].strip()
for key in abstract_dict:
input_code_list.append('reference_articles["{}"] = "{}"'.format(key, abstract_dict[key]))
input_code_list.append('intent = "{}"'.format(inp_intent))
input_code_str += "\n ".join(input_code_list)
code_str = get_code_str(gt_summary, tmp_list)
prompt = prompt_template.format(input_code_str)
return gt_summary, prompt, code_str
def preprocess_retrieved_out(tmp_keys, out):
new_dict = {}
for key in tmp_keys:
for line in out.split("\n"):
if key in line:
summ_doc = line.split(":", 1)[-1].strip()
new_dict[key] = {"abstract": summ_doc}
print(key)
print(summ_doc)
print()
break
return new_dict
def get_slide(topic, text):
slide_prompt = '''Convert this text into more structured text (in markdown) that can be put into the content of a slide in a presentation (e.g. use bullet points, numbered points, proper layout, etc.). Also, the include the topic "{}" of the slide. -
{}'''
azure_models = AzureModels("gpt4o")
slide_prompt = slide_prompt.format(topic, text)
out_ = azure_models.get_completion(slide_prompt, 100)
time.sleep(2)
return out_
def get_retrieved_results(MODEL_NAME, num_shots, method, train_list, test_list, code=False, organize_out=None):
response_template = ''
instruction_template = ''
final_dict = {}
pred_dict = {}
start_idx = 0
icl_extra_info = ""
test_extra_info = ""
if 'gpt4' in MODEL_NAME:
azure_models = AzureModels(MODEL_NAME)
else:
if code:
instruction_template = '''Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
'''
response_template = '### Response:\n'
else:
response_template = '### Assistant: '
if MODEL_NAME=='gemma2b':
model_id = "google/gemma-2b-it"
elif MODEL_NAME=='gemma7b':
model_id = "google/gemma-7b-it"
elif MODEL_NAME=='mistral7b':
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
elif MODEL_NAME=="llama7b":
model_id = "meta-llama/Llama-2-7b-chat-hf"
elif MODEL_NAME=="llama13b":
model_id = "meta-llama/Llama-2-13b-chat-hf"
elif MODEL_NAME=="llama3":
model_id="meta-llama/Meta-Llama-3-8B-Instruct"
elif MODEL_NAME=="galactica7b":
model_id = "facebook/galactica-6.7b"
open_models = OpenModels(model_id)
prompt_template = '''Given are a set of articles referenced in a Wikipedia Article, and the intent -
Reference Articles:
{}
Intent:
{}
Summarize each reference article (generate in the format "@cite_K : <SUMMARIZED CONTENT CORREPONDING TO @cite_K>", each in a new line, where @cite_K represents each of the following citation/reference tags - {}, given in Reference Articles), given the reference articles as documents, and the intent.{}
{}Answer: '''
if organize_out!=None:
prompt_template = '''Given are a set of articles referenced in a Wikipedia Article, and the intent -
Reference Articles:
{}
Intent:
{}
Generate the wikipedia article section in 100-200 words based on the intent as an intent-based multi-document summary, given the reference articles as documents, and the intent.{}
{}Answer: '''
if code:
prompt_template = '''def main():
# Given is a dictionary of articles that are referenced in a section of the Wikipedia Article, and the intent -
reference_articles = dict()
{}'''
if method == 'bm25':
retrieve_dict = read_from_file("bm25_10_icl_samples_50_holdout_samples.json")
elif method == "gat":
retrieve_dict = read_from_file("gat_20_icl_samples_50_holdout_samples.json")
#len(test_list))):
icl_train_indices = [0,1]
if code:
for i in tqdm(range(start_idx, len(test_list))):#start_idx, len(test_list))):
if len(test_list[i]['ref_abstract']) > 1:
full_icl_prompt = ""
hier_cluster_prompt = "\n def hierarchical_clustering():\n # Hierarchical Clustering of references within a section of the Wikipedia Article, based on the reference articles and the intent\n citation_bracket = {} # This dictionary contains lists as values that shows how references are grouped within the same citation bracket in the section of the Wikipedia Article\n sentence = {} # This dictionary contains lists, where each list contains references in a sentence in the section of the Wikipedia Article\n\n"
if num_shots > 0:
if method == "random":
icl_train_indices = random.sample(holdout_indices, num_shots)#random.sample(np.arange(len(train_list)).tolist())
elif (method == "bm25") or (method == "gat"):
icl_train_indices = [int(retrieve_dict[str(i)][j]) for j in range(num_shots)]
elif method == 'fixed':
icl_train_indices = icl_train_indices[:num_shots]
for enum_idx, icl_train_idx in enumerate(icl_train_indices):
# Fixed ICL Sample
icl_gt_summary, icl_prompt, icl_code_str = get_prompt(train_list, icl_train_idx, prompt_template) # this particular example has 6 citations
# icl_gt_summary_2, icl_prompt_2, icl_code_str_2 = get_prompt(train_list, 85) # this particular example has 12 citations, 4 of which are missing
full_icl_prompt += "##Example {}:\n\n".format(enum_idx + 1) + instruction_template + icl_prompt + hier_cluster_prompt + icl_code_str + "\n\n"
full_icl_prompt += "##Example {}:\n\n".format(num_shots+1)
gt_summary, prompt, code_str = get_prompt(test_list, i, prompt_template)
# full_icl_prompt_2 = "##Example 2:\n\n" + icl_prompt_2 + hier_cluster_prompt + icl_code_str_2
final_prompt = full_icl_prompt + instruction_template + prompt + hier_cluster_prompt + " # only generate the code that comes after this, as if you are on autocomplete mode\n" + response_template
# final_prompt = full_icl_prompt + "\n\n" + full_icl_prompt_2 + "\n\n" + prompt
# final_prompt = full_icl_prompt + "\n\n" + prompt
# print(get_num_inp_tokens(final_prompt))
# print(gt_summary)
# print("---------")
# print(final_prompt)
# print("---------")
# print("GT:")
# print(code_str)
# print("---------")
max_tokens = 500
if 'gpt4' in MODEL_NAME:
out_ = azure_models.get_completion(final_prompt, max_tokens)
time.sleep(2)
else:
out_ = open_models.open_completion(final_prompt, max_tokens, stop_token="##Example {}".format(num_shots + 2))
# print("Predicted:")
# print(out_)
final_dict[i] = out_
return final_dict
# write_to_file(save_filepath, final_dict)
else:
if organize_out==None:
tmp_max_tok_len=1000
else:
tmp_max_tok_len=300
for i in tqdm(range(start_idx, len(test_list))):#len(test_list))):
if len(test_list[i]['ref_abstract']) > 1:
icl_prompt = ""
if num_shots > 0:
if method == "random":
icl_train_indices = random.sample(holdout_indices, num_shots)#random.sample(np.arange(len(train_list)).tolist())
elif method == "bm25":
icl_train_indices = [int(retrieve_dict[str(i)][j]) for j in range(num_shots)]
elif method == 'fixed':
icl_train_indices = icl_train_indices[:num_shots]
for enum_idx, icl_train_idx in enumerate(icl_train_indices):
icl_tmp_list = train_list[icl_train_idx]['ref_abstract']
icl_inp_intent = train_list[icl_train_idx]['abstract']
icl_gt_summary = train_list[icl_train_idx]['related_work']
if organize_out!=None:
icl_code_str = get_code_str(icl_gt_summary, icl_tmp_list)
icl_extra_info = code_to_extra_info(icl_code_str)
icl_abstract_dict = {}
for key in icl_tmp_list:
if organize_out==None:
icl_abstract_dict[key] = icl_tmp_list[key]#['abstract']
else:
icl_abstract_dict[key] = icl_tmp_list[key]['abstract']
icl_abstract_list = [key + " : " + icl_abstract_dict[key] for key in icl_abstract_dict]
icl_paper_abstracts = "\n".join(icl_abstract_list)
icl_prompt += "##Example {}:\n\n".format(enum_idx + 1) + prompt_template.format(icl_paper_abstracts, icl_inp_intent, " ".join(list(icl_tmp_list.keys())), icl_extra_info, response_template) + icl_gt_summary.strip() + "\n\n"
icl_prompt += "##Example {}:\n\n".format(num_shots+1)
gt_summary = test_list[i]['related_work']
inp_intent = test_list[i]['abstract']
if organize_out!=None:
test_code_str = organize_out[str(i)]
test_extra_info = code_to_extra_info(test_code_str)
# print(sent_tokenize(gt_summary))
# print()
# print(1/0)
tmp_list = test_list[i]['ref_abstract']
# abstract_list = []
# cite_tags = []
abstract_dict = {}
for key in tmp_list:
if organize_out==None:
abstract_dict[key] = tmp_list[key]#['abstract']
else:
abstract_dict[key] = tmp_list[key]['abstract']
abstract_list = [key + " : " + abstract_dict[key] for key in abstract_dict]
paper_abstracts = "\n".join(abstract_list)
prompt = prompt_template.format(paper_abstracts, inp_intent, " ".join(list(tmp_list.keys())), test_extra_info, response_template)
# if num_shots == 1:
prompt = icl_prompt + prompt
# print(prompt)
# print("-----------")
if 'gpt4' in MODEL_NAME:
out_ = azure_models.get_completion(prompt, tmp_max_tok_len)
time.sleep(2)
else:
# try:
out_ = open_models.open_completion(prompt, tmp_max_tok_len, temperature=0.7)
if organize_out==None:
test_list[i]["ref_abstract"] = preprocess_retrieved_out(tmp_list, out_)
else:
pred_dict[i] = out_
# return pred_dict
# write_to_file("retrieved_docs.json", test_list)
if organize_out==None:
return test_list
else:
return pred_dict |