Spaces:
Runtime error
Runtime error
import streamlit as st | |
import textwrap | |
import torch | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
DEVICE = torch.device("cpu") | |
# Load GPT-2 model and tokenizer | |
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2') | |
model_finetuned = GPT2LMHeadModel.from_pretrained( | |
'sberbank-ai/rugpt3small_based_on_gpt2', | |
output_attentions = False, | |
output_hidden_states = False, | |
) | |
if torch.cuda.is_available(): | |
model_finetuned.load_state_dict(torch.load('models/brat.pt')) | |
else: | |
model_finetuned.load_state_dict(torch.load('models/brat.pt', map_location=torch.device('cpu'))) | |
model_finetuned.eval() | |
# Function to generate text | |
def generate_text(prompt, temperature, top_p, max_length, top_k): | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
out = model_finetuned.generate( | |
input_ids, | |
do_sample=True, | |
num_beams=5, | |
temperature=temperature, | |
top_p=top_p, | |
max_length=max_length, | |
top_k=top_k, | |
no_repeat_ngram_size=3, | |
num_return_sequences=1, | |
) | |
generated_text = list(map(tokenizer.decode, out)) | |
return generated_text | |
# Streamlit app | |
def main(): | |
st.title("Генерация текста 'Кодекс Братана'") | |
# User inputs | |
prompt = st.text_area("Введите начало текста") | |
temperature = st.slider("Temperature", min_value=0.2, max_value=2.5, value=1.8, step=0.1) | |
top_p = st.slider("Top-p", min_value=0.1, max_value=1.0, value=0.9, step=0.1) | |
max_length = st.slider("Max Length", min_value=10, max_value=300, value=100, step=10) | |
top_k = st.slider("Top-k", min_value=1, max_value=500, value=500, step=10) | |
num_return_sequences = st.slider("Number of Sequences", min_value=1, max_value=5, value=1, step=1) | |
if st.button("Generate Text"): | |
st.subheader("Generated Text:") | |
for i in range(num_return_sequences): | |
generated_text = generate_text(prompt, temperature, top_p, max_length, top_k) | |
st.write(f"Generated Text {i + 1}:") | |
wrapped_text = textwrap.fill(generated_text[0], width=80) | |
st.write(wrapped_text) | |
st.write("------------------") | |
st.sidebar.image('images/theBROcode.jpeg', use_column_width=True) | |
if __name__ == "__main__": | |
main() |