Spaces:
Runtime error
Runtime error
Anton
commited on
Commit
•
aade6d7
1
Parent(s):
754fbbf
Add application file
Browse files- .DS_Store +0 -0
- file/lstm_preprocessing.py +160 -0
- function/lstm_preprocessing.py +160 -0
- images/lstm_preprocessing.py +160 -0
- models/lstm_preprocessing.py +160 -0
- pages/lstm_preprocessing.py +160 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
file/lstm_preprocessing.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import string
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
from sklearn.linear_model import LogisticRegression
|
8 |
+
from nltk.stem import SnowballStemmer
|
9 |
+
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
stop_words = set(stopwords.words('english'))
|
12 |
+
stemmer = SnowballStemmer('russian')
|
13 |
+
sw = stopwords.words('russian')
|
14 |
+
|
15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
16 |
+
|
17 |
+
class LSTMClassifier(nn.Module):
|
18 |
+
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.embedding_dim = embedding_dim
|
22 |
+
self.hidden_size = hidden_size
|
23 |
+
self.embedding = embedding
|
24 |
+
|
25 |
+
self.lstm = nn.LSTM(
|
26 |
+
input_size=self.embedding_dim,
|
27 |
+
hidden_size=self.hidden_size,
|
28 |
+
batch_first=True
|
29 |
+
)
|
30 |
+
self.clf = nn.Linear(self.hidden_size, 1)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
embeddings = self.embedding(x)
|
34 |
+
_, (h_n, _) = self.lstm(embeddings)
|
35 |
+
out = self.clf(h_n.squeeze())
|
36 |
+
return out
|
37 |
+
|
38 |
+
|
39 |
+
def data_preprocessing(text: str) -> str:
|
40 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
41 |
+
stopwords, digits
|
42 |
+
|
43 |
+
Args:
|
44 |
+
text (str): input string for preprocessing
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
str: preprocessed string
|
48 |
+
"""
|
49 |
+
|
50 |
+
text = text.lower()
|
51 |
+
text = re.sub('<.*?>', '', text) # html tags
|
52 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
53 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
54 |
+
text = [word for word in text.split() if not word.isdigit()]
|
55 |
+
text = ' '.join(text)
|
56 |
+
return text
|
57 |
+
|
58 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
59 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
60 |
+
|
61 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
62 |
+
"""Make left-sided padding for input list of tokens
|
63 |
+
|
64 |
+
Args:
|
65 |
+
review_int (list): input list of tokens
|
66 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
np.array: padded sequences
|
70 |
+
"""
|
71 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
72 |
+
for i, review in enumerate(review_int):
|
73 |
+
if len(review) <= seq_len:
|
74 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
75 |
+
new = zeros + review
|
76 |
+
else:
|
77 |
+
new = review[: seq_len]
|
78 |
+
features[i, :] = np.array(new)
|
79 |
+
|
80 |
+
return features
|
81 |
+
|
82 |
+
def preprocess_single_string(
|
83 |
+
input_string: str,
|
84 |
+
seq_len: int,
|
85 |
+
vocab_to_int: dict,
|
86 |
+
) -> torch.tensor:
|
87 |
+
"""Function for all preprocessing steps on a single string
|
88 |
+
|
89 |
+
Args:
|
90 |
+
input_string (str): input single string for preprocessing
|
91 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
92 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
list: preprocessed string
|
96 |
+
"""
|
97 |
+
|
98 |
+
preprocessed_string = data_preprocessing(input_string)
|
99 |
+
result_list = []
|
100 |
+
for word in preprocessed_string.split():
|
101 |
+
try:
|
102 |
+
result_list.append(vocab_to_int[word])
|
103 |
+
except KeyError as e:
|
104 |
+
print(f'{e}: not in dictionary!')
|
105 |
+
result_padded = padding([result_list], seq_len)[0]
|
106 |
+
|
107 |
+
return torch.tensor(result_padded)
|
108 |
+
|
109 |
+
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
|
110 |
+
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
|
111 |
+
model.eval()
|
112 |
+
pred = model(p_str)
|
113 |
+
output = pred.sigmoid().round().item()
|
114 |
+
if output == 0:
|
115 |
+
return 'Негативный отзыв'
|
116 |
+
else:
|
117 |
+
return 'Позитивный отзыв'
|
118 |
+
|
119 |
+
def predict_single_string(text: str,
|
120 |
+
model: BertModel,
|
121 |
+
loaded_model: LogisticRegression
|
122 |
+
) -> str:
|
123 |
+
|
124 |
+
with torch.no_grad():
|
125 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
126 |
+
output = model(**encoded_input)
|
127 |
+
vector = output[0][:,0,:]
|
128 |
+
pred0 = loaded_model.predict_proba(vector)[0][0]
|
129 |
+
pred1 = loaded_model.predict_proba(vector)[0][1]
|
130 |
+
if pred0 > pred1:
|
131 |
+
return 'Негативный отзыв'
|
132 |
+
else:
|
133 |
+
return 'Позитивный отзыв'
|
134 |
+
|
135 |
+
def clean(text):
|
136 |
+
|
137 |
+
text = text.lower()
|
138 |
+
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
|
139 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
140 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
|
141 |
+
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
|
142 |
+
|
143 |
+
return text
|
144 |
+
|
145 |
+
def tokin(text):
|
146 |
+
text = clean(text)
|
147 |
+
text = ' '.join([stemmer.stem(word) for word in text.split()])
|
148 |
+
text = ' '.join([word for word in text.split() if word not in sw])
|
149 |
+
return text
|
150 |
+
|
151 |
+
|
152 |
+
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
|
153 |
+
|
154 |
+
t = tokin(text).split(' ')
|
155 |
+
new_text_bow = loaded_vectorizer.transform(t)
|
156 |
+
predicted_label = loaded_classifier.predict(new_text_bow)
|
157 |
+
if predicted_label == 0:
|
158 |
+
return 'Негативный отзыв'
|
159 |
+
else:
|
160 |
+
return 'Позитивный отзыв'
|
function/lstm_preprocessing.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import string
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
from sklearn.linear_model import LogisticRegression
|
8 |
+
from nltk.stem import SnowballStemmer
|
9 |
+
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
stop_words = set(stopwords.words('english'))
|
12 |
+
stemmer = SnowballStemmer('russian')
|
13 |
+
sw = stopwords.words('russian')
|
14 |
+
|
15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
16 |
+
|
17 |
+
class LSTMClassifier(nn.Module):
|
18 |
+
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.embedding_dim = embedding_dim
|
22 |
+
self.hidden_size = hidden_size
|
23 |
+
self.embedding = embedding
|
24 |
+
|
25 |
+
self.lstm = nn.LSTM(
|
26 |
+
input_size=self.embedding_dim,
|
27 |
+
hidden_size=self.hidden_size,
|
28 |
+
batch_first=True
|
29 |
+
)
|
30 |
+
self.clf = nn.Linear(self.hidden_size, 1)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
embeddings = self.embedding(x)
|
34 |
+
_, (h_n, _) = self.lstm(embeddings)
|
35 |
+
out = self.clf(h_n.squeeze())
|
36 |
+
return out
|
37 |
+
|
38 |
+
|
39 |
+
def data_preprocessing(text: str) -> str:
|
40 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
41 |
+
stopwords, digits
|
42 |
+
|
43 |
+
Args:
|
44 |
+
text (str): input string for preprocessing
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
str: preprocessed string
|
48 |
+
"""
|
49 |
+
|
50 |
+
text = text.lower()
|
51 |
+
text = re.sub('<.*?>', '', text) # html tags
|
52 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
53 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
54 |
+
text = [word for word in text.split() if not word.isdigit()]
|
55 |
+
text = ' '.join(text)
|
56 |
+
return text
|
57 |
+
|
58 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
59 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
60 |
+
|
61 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
62 |
+
"""Make left-sided padding for input list of tokens
|
63 |
+
|
64 |
+
Args:
|
65 |
+
review_int (list): input list of tokens
|
66 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
np.array: padded sequences
|
70 |
+
"""
|
71 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
72 |
+
for i, review in enumerate(review_int):
|
73 |
+
if len(review) <= seq_len:
|
74 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
75 |
+
new = zeros + review
|
76 |
+
else:
|
77 |
+
new = review[: seq_len]
|
78 |
+
features[i, :] = np.array(new)
|
79 |
+
|
80 |
+
return features
|
81 |
+
|
82 |
+
def preprocess_single_string(
|
83 |
+
input_string: str,
|
84 |
+
seq_len: int,
|
85 |
+
vocab_to_int: dict,
|
86 |
+
) -> torch.tensor:
|
87 |
+
"""Function for all preprocessing steps on a single string
|
88 |
+
|
89 |
+
Args:
|
90 |
+
input_string (str): input single string for preprocessing
|
91 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
92 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
list: preprocessed string
|
96 |
+
"""
|
97 |
+
|
98 |
+
preprocessed_string = data_preprocessing(input_string)
|
99 |
+
result_list = []
|
100 |
+
for word in preprocessed_string.split():
|
101 |
+
try:
|
102 |
+
result_list.append(vocab_to_int[word])
|
103 |
+
except KeyError as e:
|
104 |
+
print(f'{e}: not in dictionary!')
|
105 |
+
result_padded = padding([result_list], seq_len)[0]
|
106 |
+
|
107 |
+
return torch.tensor(result_padded)
|
108 |
+
|
109 |
+
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
|
110 |
+
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
|
111 |
+
model.eval()
|
112 |
+
pred = model(p_str)
|
113 |
+
output = pred.sigmoid().round().item()
|
114 |
+
if output == 0:
|
115 |
+
return 'Негативный отзыв'
|
116 |
+
else:
|
117 |
+
return 'Позитивный отзыв'
|
118 |
+
|
119 |
+
def predict_single_string(text: str,
|
120 |
+
model: BertModel,
|
121 |
+
loaded_model: LogisticRegression
|
122 |
+
) -> str:
|
123 |
+
|
124 |
+
with torch.no_grad():
|
125 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
126 |
+
output = model(**encoded_input)
|
127 |
+
vector = output[0][:,0,:]
|
128 |
+
pred0 = loaded_model.predict_proba(vector)[0][0]
|
129 |
+
pred1 = loaded_model.predict_proba(vector)[0][1]
|
130 |
+
if pred0 > pred1:
|
131 |
+
return 'Негативный отзыв'
|
132 |
+
else:
|
133 |
+
return 'Позитивный отзыв'
|
134 |
+
|
135 |
+
def clean(text):
|
136 |
+
|
137 |
+
text = text.lower()
|
138 |
+
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
|
139 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
140 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
|
141 |
+
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
|
142 |
+
|
143 |
+
return text
|
144 |
+
|
145 |
+
def tokin(text):
|
146 |
+
text = clean(text)
|
147 |
+
text = ' '.join([stemmer.stem(word) for word in text.split()])
|
148 |
+
text = ' '.join([word for word in text.split() if word not in sw])
|
149 |
+
return text
|
150 |
+
|
151 |
+
|
152 |
+
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
|
153 |
+
|
154 |
+
t = tokin(text).split(' ')
|
155 |
+
new_text_bow = loaded_vectorizer.transform(t)
|
156 |
+
predicted_label = loaded_classifier.predict(new_text_bow)
|
157 |
+
if predicted_label == 0:
|
158 |
+
return 'Негативный отзыв'
|
159 |
+
else:
|
160 |
+
return 'Позитивный отзыв'
|
images/lstm_preprocessing.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import string
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
from sklearn.linear_model import LogisticRegression
|
8 |
+
from nltk.stem import SnowballStemmer
|
9 |
+
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
stop_words = set(stopwords.words('english'))
|
12 |
+
stemmer = SnowballStemmer('russian')
|
13 |
+
sw = stopwords.words('russian')
|
14 |
+
|
15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
16 |
+
|
17 |
+
class LSTMClassifier(nn.Module):
|
18 |
+
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.embedding_dim = embedding_dim
|
22 |
+
self.hidden_size = hidden_size
|
23 |
+
self.embedding = embedding
|
24 |
+
|
25 |
+
self.lstm = nn.LSTM(
|
26 |
+
input_size=self.embedding_dim,
|
27 |
+
hidden_size=self.hidden_size,
|
28 |
+
batch_first=True
|
29 |
+
)
|
30 |
+
self.clf = nn.Linear(self.hidden_size, 1)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
embeddings = self.embedding(x)
|
34 |
+
_, (h_n, _) = self.lstm(embeddings)
|
35 |
+
out = self.clf(h_n.squeeze())
|
36 |
+
return out
|
37 |
+
|
38 |
+
|
39 |
+
def data_preprocessing(text: str) -> str:
|
40 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
41 |
+
stopwords, digits
|
42 |
+
|
43 |
+
Args:
|
44 |
+
text (str): input string for preprocessing
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
str: preprocessed string
|
48 |
+
"""
|
49 |
+
|
50 |
+
text = text.lower()
|
51 |
+
text = re.sub('<.*?>', '', text) # html tags
|
52 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
53 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
54 |
+
text = [word for word in text.split() if not word.isdigit()]
|
55 |
+
text = ' '.join(text)
|
56 |
+
return text
|
57 |
+
|
58 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
59 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
60 |
+
|
61 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
62 |
+
"""Make left-sided padding for input list of tokens
|
63 |
+
|
64 |
+
Args:
|
65 |
+
review_int (list): input list of tokens
|
66 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
np.array: padded sequences
|
70 |
+
"""
|
71 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
72 |
+
for i, review in enumerate(review_int):
|
73 |
+
if len(review) <= seq_len:
|
74 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
75 |
+
new = zeros + review
|
76 |
+
else:
|
77 |
+
new = review[: seq_len]
|
78 |
+
features[i, :] = np.array(new)
|
79 |
+
|
80 |
+
return features
|
81 |
+
|
82 |
+
def preprocess_single_string(
|
83 |
+
input_string: str,
|
84 |
+
seq_len: int,
|
85 |
+
vocab_to_int: dict,
|
86 |
+
) -> torch.tensor:
|
87 |
+
"""Function for all preprocessing steps on a single string
|
88 |
+
|
89 |
+
Args:
|
90 |
+
input_string (str): input single string for preprocessing
|
91 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
92 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
list: preprocessed string
|
96 |
+
"""
|
97 |
+
|
98 |
+
preprocessed_string = data_preprocessing(input_string)
|
99 |
+
result_list = []
|
100 |
+
for word in preprocessed_string.split():
|
101 |
+
try:
|
102 |
+
result_list.append(vocab_to_int[word])
|
103 |
+
except KeyError as e:
|
104 |
+
print(f'{e}: not in dictionary!')
|
105 |
+
result_padded = padding([result_list], seq_len)[0]
|
106 |
+
|
107 |
+
return torch.tensor(result_padded)
|
108 |
+
|
109 |
+
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
|
110 |
+
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
|
111 |
+
model.eval()
|
112 |
+
pred = model(p_str)
|
113 |
+
output = pred.sigmoid().round().item()
|
114 |
+
if output == 0:
|
115 |
+
return 'Негативный отзыв'
|
116 |
+
else:
|
117 |
+
return 'Позитивный отзыв'
|
118 |
+
|
119 |
+
def predict_single_string(text: str,
|
120 |
+
model: BertModel,
|
121 |
+
loaded_model: LogisticRegression
|
122 |
+
) -> str:
|
123 |
+
|
124 |
+
with torch.no_grad():
|
125 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
126 |
+
output = model(**encoded_input)
|
127 |
+
vector = output[0][:,0,:]
|
128 |
+
pred0 = loaded_model.predict_proba(vector)[0][0]
|
129 |
+
pred1 = loaded_model.predict_proba(vector)[0][1]
|
130 |
+
if pred0 > pred1:
|
131 |
+
return 'Негативный отзыв'
|
132 |
+
else:
|
133 |
+
return 'Позитивный отзыв'
|
134 |
+
|
135 |
+
def clean(text):
|
136 |
+
|
137 |
+
text = text.lower()
|
138 |
+
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
|
139 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
140 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
|
141 |
+
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
|
142 |
+
|
143 |
+
return text
|
144 |
+
|
145 |
+
def tokin(text):
|
146 |
+
text = clean(text)
|
147 |
+
text = ' '.join([stemmer.stem(word) for word in text.split()])
|
148 |
+
text = ' '.join([word for word in text.split() if word not in sw])
|
149 |
+
return text
|
150 |
+
|
151 |
+
|
152 |
+
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
|
153 |
+
|
154 |
+
t = tokin(text).split(' ')
|
155 |
+
new_text_bow = loaded_vectorizer.transform(t)
|
156 |
+
predicted_label = loaded_classifier.predict(new_text_bow)
|
157 |
+
if predicted_label == 0:
|
158 |
+
return 'Негативный отзыв'
|
159 |
+
else:
|
160 |
+
return 'Позитивный отзыв'
|
models/lstm_preprocessing.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import string
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
from sklearn.linear_model import LogisticRegression
|
8 |
+
from nltk.stem import SnowballStemmer
|
9 |
+
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
stop_words = set(stopwords.words('english'))
|
12 |
+
stemmer = SnowballStemmer('russian')
|
13 |
+
sw = stopwords.words('russian')
|
14 |
+
|
15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
16 |
+
|
17 |
+
class LSTMClassifier(nn.Module):
|
18 |
+
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.embedding_dim = embedding_dim
|
22 |
+
self.hidden_size = hidden_size
|
23 |
+
self.embedding = embedding
|
24 |
+
|
25 |
+
self.lstm = nn.LSTM(
|
26 |
+
input_size=self.embedding_dim,
|
27 |
+
hidden_size=self.hidden_size,
|
28 |
+
batch_first=True
|
29 |
+
)
|
30 |
+
self.clf = nn.Linear(self.hidden_size, 1)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
embeddings = self.embedding(x)
|
34 |
+
_, (h_n, _) = self.lstm(embeddings)
|
35 |
+
out = self.clf(h_n.squeeze())
|
36 |
+
return out
|
37 |
+
|
38 |
+
|
39 |
+
def data_preprocessing(text: str) -> str:
|
40 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
41 |
+
stopwords, digits
|
42 |
+
|
43 |
+
Args:
|
44 |
+
text (str): input string for preprocessing
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
str: preprocessed string
|
48 |
+
"""
|
49 |
+
|
50 |
+
text = text.lower()
|
51 |
+
text = re.sub('<.*?>', '', text) # html tags
|
52 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
53 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
54 |
+
text = [word for word in text.split() if not word.isdigit()]
|
55 |
+
text = ' '.join(text)
|
56 |
+
return text
|
57 |
+
|
58 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
59 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
60 |
+
|
61 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
62 |
+
"""Make left-sided padding for input list of tokens
|
63 |
+
|
64 |
+
Args:
|
65 |
+
review_int (list): input list of tokens
|
66 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
np.array: padded sequences
|
70 |
+
"""
|
71 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
72 |
+
for i, review in enumerate(review_int):
|
73 |
+
if len(review) <= seq_len:
|
74 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
75 |
+
new = zeros + review
|
76 |
+
else:
|
77 |
+
new = review[: seq_len]
|
78 |
+
features[i, :] = np.array(new)
|
79 |
+
|
80 |
+
return features
|
81 |
+
|
82 |
+
def preprocess_single_string(
|
83 |
+
input_string: str,
|
84 |
+
seq_len: int,
|
85 |
+
vocab_to_int: dict,
|
86 |
+
) -> torch.tensor:
|
87 |
+
"""Function for all preprocessing steps on a single string
|
88 |
+
|
89 |
+
Args:
|
90 |
+
input_string (str): input single string for preprocessing
|
91 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
92 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
list: preprocessed string
|
96 |
+
"""
|
97 |
+
|
98 |
+
preprocessed_string = data_preprocessing(input_string)
|
99 |
+
result_list = []
|
100 |
+
for word in preprocessed_string.split():
|
101 |
+
try:
|
102 |
+
result_list.append(vocab_to_int[word])
|
103 |
+
except KeyError as e:
|
104 |
+
print(f'{e}: not in dictionary!')
|
105 |
+
result_padded = padding([result_list], seq_len)[0]
|
106 |
+
|
107 |
+
return torch.tensor(result_padded)
|
108 |
+
|
109 |
+
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
|
110 |
+
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
|
111 |
+
model.eval()
|
112 |
+
pred = model(p_str)
|
113 |
+
output = pred.sigmoid().round().item()
|
114 |
+
if output == 0:
|
115 |
+
return 'Негативный отзыв'
|
116 |
+
else:
|
117 |
+
return 'Позитивный отзыв'
|
118 |
+
|
119 |
+
def predict_single_string(text: str,
|
120 |
+
model: BertModel,
|
121 |
+
loaded_model: LogisticRegression
|
122 |
+
) -> str:
|
123 |
+
|
124 |
+
with torch.no_grad():
|
125 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
126 |
+
output = model(**encoded_input)
|
127 |
+
vector = output[0][:,0,:]
|
128 |
+
pred0 = loaded_model.predict_proba(vector)[0][0]
|
129 |
+
pred1 = loaded_model.predict_proba(vector)[0][1]
|
130 |
+
if pred0 > pred1:
|
131 |
+
return 'Негативный отзыв'
|
132 |
+
else:
|
133 |
+
return 'Позитивный отзыв'
|
134 |
+
|
135 |
+
def clean(text):
|
136 |
+
|
137 |
+
text = text.lower()
|
138 |
+
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
|
139 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
140 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
|
141 |
+
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
|
142 |
+
|
143 |
+
return text
|
144 |
+
|
145 |
+
def tokin(text):
|
146 |
+
text = clean(text)
|
147 |
+
text = ' '.join([stemmer.stem(word) for word in text.split()])
|
148 |
+
text = ' '.join([word for word in text.split() if word not in sw])
|
149 |
+
return text
|
150 |
+
|
151 |
+
|
152 |
+
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
|
153 |
+
|
154 |
+
t = tokin(text).split(' ')
|
155 |
+
new_text_bow = loaded_vectorizer.transform(t)
|
156 |
+
predicted_label = loaded_classifier.predict(new_text_bow)
|
157 |
+
if predicted_label == 0:
|
158 |
+
return 'Негативный отзыв'
|
159 |
+
else:
|
160 |
+
return 'Позитивный отзыв'
|
pages/lstm_preprocessing.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import string
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
from sklearn.linear_model import LogisticRegression
|
8 |
+
from nltk.stem import SnowballStemmer
|
9 |
+
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
stop_words = set(stopwords.words('english'))
|
12 |
+
stemmer = SnowballStemmer('russian')
|
13 |
+
sw = stopwords.words('russian')
|
14 |
+
|
15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
16 |
+
|
17 |
+
class LSTMClassifier(nn.Module):
|
18 |
+
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.embedding_dim = embedding_dim
|
22 |
+
self.hidden_size = hidden_size
|
23 |
+
self.embedding = embedding
|
24 |
+
|
25 |
+
self.lstm = nn.LSTM(
|
26 |
+
input_size=self.embedding_dim,
|
27 |
+
hidden_size=self.hidden_size,
|
28 |
+
batch_first=True
|
29 |
+
)
|
30 |
+
self.clf = nn.Linear(self.hidden_size, 1)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
embeddings = self.embedding(x)
|
34 |
+
_, (h_n, _) = self.lstm(embeddings)
|
35 |
+
out = self.clf(h_n.squeeze())
|
36 |
+
return out
|
37 |
+
|
38 |
+
|
39 |
+
def data_preprocessing(text: str) -> str:
|
40 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
41 |
+
stopwords, digits
|
42 |
+
|
43 |
+
Args:
|
44 |
+
text (str): input string for preprocessing
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
str: preprocessed string
|
48 |
+
"""
|
49 |
+
|
50 |
+
text = text.lower()
|
51 |
+
text = re.sub('<.*?>', '', text) # html tags
|
52 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
53 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
54 |
+
text = [word for word in text.split() if not word.isdigit()]
|
55 |
+
text = ' '.join(text)
|
56 |
+
return text
|
57 |
+
|
58 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
59 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
60 |
+
|
61 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
62 |
+
"""Make left-sided padding for input list of tokens
|
63 |
+
|
64 |
+
Args:
|
65 |
+
review_int (list): input list of tokens
|
66 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
np.array: padded sequences
|
70 |
+
"""
|
71 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
72 |
+
for i, review in enumerate(review_int):
|
73 |
+
if len(review) <= seq_len:
|
74 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
75 |
+
new = zeros + review
|
76 |
+
else:
|
77 |
+
new = review[: seq_len]
|
78 |
+
features[i, :] = np.array(new)
|
79 |
+
|
80 |
+
return features
|
81 |
+
|
82 |
+
def preprocess_single_string(
|
83 |
+
input_string: str,
|
84 |
+
seq_len: int,
|
85 |
+
vocab_to_int: dict,
|
86 |
+
) -> torch.tensor:
|
87 |
+
"""Function for all preprocessing steps on a single string
|
88 |
+
|
89 |
+
Args:
|
90 |
+
input_string (str): input single string for preprocessing
|
91 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
92 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
list: preprocessed string
|
96 |
+
"""
|
97 |
+
|
98 |
+
preprocessed_string = data_preprocessing(input_string)
|
99 |
+
result_list = []
|
100 |
+
for word in preprocessed_string.split():
|
101 |
+
try:
|
102 |
+
result_list.append(vocab_to_int[word])
|
103 |
+
except KeyError as e:
|
104 |
+
print(f'{e}: not in dictionary!')
|
105 |
+
result_padded = padding([result_list], seq_len)[0]
|
106 |
+
|
107 |
+
return torch.tensor(result_padded)
|
108 |
+
|
109 |
+
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
|
110 |
+
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
|
111 |
+
model.eval()
|
112 |
+
pred = model(p_str)
|
113 |
+
output = pred.sigmoid().round().item()
|
114 |
+
if output == 0:
|
115 |
+
return 'Негативный отзыв'
|
116 |
+
else:
|
117 |
+
return 'Позитивный отзыв'
|
118 |
+
|
119 |
+
def predict_single_string(text: str,
|
120 |
+
model: BertModel,
|
121 |
+
loaded_model: LogisticRegression
|
122 |
+
) -> str:
|
123 |
+
|
124 |
+
with torch.no_grad():
|
125 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
126 |
+
output = model(**encoded_input)
|
127 |
+
vector = output[0][:,0,:]
|
128 |
+
pred0 = loaded_model.predict_proba(vector)[0][0]
|
129 |
+
pred1 = loaded_model.predict_proba(vector)[0][1]
|
130 |
+
if pred0 > pred1:
|
131 |
+
return 'Негативный отзыв'
|
132 |
+
else:
|
133 |
+
return 'Позитивный отзыв'
|
134 |
+
|
135 |
+
def clean(text):
|
136 |
+
|
137 |
+
text = text.lower()
|
138 |
+
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
|
139 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
140 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
|
141 |
+
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
|
142 |
+
|
143 |
+
return text
|
144 |
+
|
145 |
+
def tokin(text):
|
146 |
+
text = clean(text)
|
147 |
+
text = ' '.join([stemmer.stem(word) for word in text.split()])
|
148 |
+
text = ' '.join([word for word in text.split() if word not in sw])
|
149 |
+
return text
|
150 |
+
|
151 |
+
|
152 |
+
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
|
153 |
+
|
154 |
+
t = tokin(text).split(' ')
|
155 |
+
new_text_bow = loaded_vectorizer.transform(t)
|
156 |
+
predicted_label = loaded_classifier.predict(new_text_bow)
|
157 |
+
if predicted_label == 0:
|
158 |
+
return 'Негативный отзыв'
|
159 |
+
else:
|
160 |
+
return 'Позитивный отзыв'
|