import re import string import numpy as np import torch import torch.nn as nn from transformers import BertTokenizer, BertModel from sklearn.linear_model import LogisticRegression from nltk.stem import SnowballStemmer from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) stemmer = SnowballStemmer('russian') sw = stopwords.words('russian') tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased') class LSTMClassifier(nn.Module): def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None: super().__init__() self.embedding_dim = embedding_dim self.hidden_size = hidden_size self.embedding = embedding self.lstm = nn.LSTM( input_size=self.embedding_dim, hidden_size=self.hidden_size, batch_first=True ) self.clf = nn.Linear(self.hidden_size, 1) def forward(self, x): embeddings = self.embedding(x) _, (h_n, _) = self.lstm(embeddings) out = self.clf(h_n.squeeze()) return out def data_preprocessing(text: str) -> str: """preprocessing string: lowercase, removing html-tags, punctuation, stopwords, digits Args: text (str): input string for preprocessing Returns: str: preprocessed string """ text = text.lower() text = re.sub('<.*?>', '', text) # html tags text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation text = ' '.join([word for word in text.split() if word not in stop_words]) text = [word for word in text.split() if not word.isdigit()] text = ' '.join(text) return text def get_words_by_freq(sorted_words: list, n: int = 10) -> list: return list(filter(lambda x: x[1] > n, sorted_words)) def padding(review_int: list, seq_len: int) -> np.array: # type: ignore """Make left-sided padding for input list of tokens Args: review_int (list): input list of tokens seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros Returns: np.array: padded sequences """ features = np.zeros((len(review_int), seq_len), dtype = int) for i, review in enumerate(review_int): if len(review) <= seq_len: zeros = list(np.zeros(seq_len - len(review))) new = zeros + review else: new = review[: seq_len] features[i, :] = np.array(new) return features def preprocess_single_string( input_string: str, seq_len: int, vocab_to_int: dict, ) -> torch.tensor: """Function for all preprocessing steps on a single string Args: input_string (str): input single string for preprocessing seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int. Returns: list: preprocessed string """ preprocessed_string = data_preprocessing(input_string) result_list = [] for word in preprocessed_string.split(): try: result_list.append(vocab_to_int[word]) except KeyError as e: print(f'{e}: not in dictionary!') result_padded = padding([result_list], seq_len)[0] return torch.tensor(result_padded) def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str: p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0) model.eval() pred = model(p_str) output = pred.sigmoid().round().item() if output == 0: return 'Негативный отзыв' else: return 'Позитивный отзыв' def predict_single_string(text: str, model: BertModel, loaded_model: LogisticRegression ) -> str: with torch.no_grad(): encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) vector = output[0][:,0,:] pred0 = loaded_model.predict_proba(vector)[0][0] pred1 = loaded_model.predict_proba(vector)[0][1] if pred0 > pred1: return 'Негативный отзыв' else: return 'Позитивный отзыв' def clean(text): text = text.lower() text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел text = re.sub(r'\d+', ' ', text) # удаляем числа text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки return text def tokin(text): text = clean(text) text = ' '.join([stemmer.stem(word) for word in text.split()]) text = ' '.join([word for word in text.split() if word not in sw]) return text def predict_ml_class(text, loaded_vectorizer, loaded_classifier): t = tokin(text).split(' ') new_text_bow = loaded_vectorizer.transform(t) predicted_label = loaded_classifier.predict(new_text_bow) if predicted_label == 0: return 'Негативный отзыв' else: return 'Позитивный отзыв'