Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TextClassificationPipeline
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
model_name = "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
|
5 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -8,7 +27,8 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
8 |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
9 |
text = st.text_area(f'Ciao! This app uses {model_name}.\nEnter your text to test it ❤️')
|
10 |
|
|
|
11 |
if text:
|
12 |
out = pipe(text)
|
13 |
|
14 |
-
st.json(out[0]
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TextClassificationPipeline
|
3 |
+
import operator
|
4 |
|
5 |
+
def get_sentiment(out):
|
6 |
+
d = dict()
|
7 |
+
for k in out.keys():
|
8 |
+
label = out[k]['label']
|
9 |
+
score = out[k]['score']
|
10 |
+
d[label] = score
|
11 |
+
|
12 |
+
winning_lab = max(d.iteritems(), key=operator.itemgetter(1))[0]
|
13 |
+
winning_score = d[winning_lab]
|
14 |
+
return winning_lab, winning_score
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
neg = out[0]
|
19 |
+
neu = out[1]
|
20 |
+
pos = out[2]
|
21 |
+
|
22 |
+
|
23 |
model_name = "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
|
24 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
25 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
27 |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
28 |
text = st.text_area(f'Ciao! This app uses {model_name}.\nEnter your text to test it ❤️')
|
29 |
|
30 |
+
|
31 |
if text:
|
32 |
out = pipe(text)
|
33 |
|
34 |
+
st.json(get_sentiment(out[0])
|