Anthos23 commited on
Commit
0e22a89
·
1 Parent(s): e7bbb75

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -1
app.py CHANGED
@@ -1,6 +1,25 @@
1
  import streamlit as st
2
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TextClassificationPipeline
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  model_name = "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
5
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
@@ -8,7 +27,8 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
9
  text = st.text_area(f'Ciao! This app uses {model_name}.\nEnter your text to test it ❤️')
10
 
 
11
  if text:
12
  out = pipe(text)
13
 
14
- st.json(out[0][0])
 
1
  import streamlit as st
2
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TextClassificationPipeline
3
+ import operator
4
 
5
+ def get_sentiment(out):
6
+ d = dict()
7
+ for k in out.keys():
8
+ label = out[k]['label']
9
+ score = out[k]['score']
10
+ d[label] = score
11
+
12
+ winning_lab = max(d.iteritems(), key=operator.itemgetter(1))[0]
13
+ winning_score = d[winning_lab]
14
+ return winning_lab, winning_score
15
+
16
+
17
+
18
+ neg = out[0]
19
+ neu = out[1]
20
+ pos = out[2]
21
+
22
+
23
  model_name = "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
24
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
25
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
27
  pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
28
  text = st.text_area(f'Ciao! This app uses {model_name}.\nEnter your text to test it ❤️')
29
 
30
+
31
  if text:
32
  out = pipe(text)
33
 
34
+ st.json(get_sentiment(out[0])