Spaces:
Build error
Build error
Anupam251272
commited on
Commit
β’
1a65f94
1
Parent(s):
77a5484
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
import soundfile as sf
|
6 |
+
import speech_recognition as sr
|
7 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
8 |
+
from gtts import gTTS
|
9 |
+
import traceback
|
10 |
+
import pyttsx3 # For better TTS
|
11 |
+
|
12 |
+
# Initialize TTS engine
|
13 |
+
tts_engine = pyttsx3.init()
|
14 |
+
|
15 |
+
def save_audio_file(audio_data):
|
16 |
+
"""
|
17 |
+
Save audio data to a temporary file
|
18 |
+
|
19 |
+
Args:
|
20 |
+
audio_data (tuple): Tuple containing sample rate and numpy array
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
str: Path to saved audio file
|
24 |
+
"""
|
25 |
+
try:
|
26 |
+
os.makedirs('temp', exist_ok=True)
|
27 |
+
sample_rate, audio_array = audio_data
|
28 |
+
file_path = os.path.join('temp', 'input_audio.wav')
|
29 |
+
sf.write(file_path, audio_array, sample_rate)
|
30 |
+
return file_path
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Error saving audio file: {e}")
|
33 |
+
return None
|
34 |
+
|
35 |
+
def safe_speech_to_text(audio_data):
|
36 |
+
"""
|
37 |
+
Safe speech-to-text conversion with comprehensive error handling
|
38 |
+
|
39 |
+
Args:
|
40 |
+
audio_data (tuple): Tuple containing sample rate and numpy array
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
str: Recognized text or error message
|
44 |
+
"""
|
45 |
+
recognizer = sr.Recognizer()
|
46 |
+
|
47 |
+
try:
|
48 |
+
audio_path = save_audio_file(audio_data)
|
49 |
+
if not audio_path:
|
50 |
+
return "Error: Could not save audio file"
|
51 |
+
|
52 |
+
file_size = os.path.getsize(audio_path)
|
53 |
+
if file_size > 10 * 1024 * 1024: # 10MB limit
|
54 |
+
return "Audio file is too large. Please upload a file smaller than 10MB."
|
55 |
+
|
56 |
+
with sr.AudioFile(audio_path) as source:
|
57 |
+
recognizer.adjust_for_ambient_noise(source, duration=0.5)
|
58 |
+
audio = recognizer.record(source)
|
59 |
+
|
60 |
+
try:
|
61 |
+
text = recognizer.recognize_google(audio)
|
62 |
+
return text
|
63 |
+
except sr.UnknownValueError:
|
64 |
+
try:
|
65 |
+
text = recognizer.recognize_sphinx(audio)
|
66 |
+
return text
|
67 |
+
except Exception as sphinx_error:
|
68 |
+
return f"Speech recognition failed: {sphinx_error}"
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
error_trace = traceback.format_exc()
|
72 |
+
return f"Unexpected error during audio processing: {e}\n{error_trace}"
|
73 |
+
|
74 |
+
def text_to_speech(text):
|
75 |
+
"""Convert text to speech with error handling"""
|
76 |
+
try:
|
77 |
+
os.makedirs('temp', exist_ok=True)
|
78 |
+
tts_engine.save_to_file(text, os.path.join('temp', "response.mp3"))
|
79 |
+
tts_engine.runAndWait()
|
80 |
+
return os.path.join('temp', "response.mp3")
|
81 |
+
except Exception as e:
|
82 |
+
print(f"Text-to-speech conversion error: {e}")
|
83 |
+
return None
|
84 |
+
|
85 |
+
def generate_educational_response(question):
|
86 |
+
"""Generate educational response with fallback"""
|
87 |
+
try:
|
88 |
+
model_name = "distilgpt2"
|
89 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
91 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
92 |
+
nlp_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
|
93 |
+
prompt = f"Explain in a simple, educational way: {question}"
|
94 |
+
response = nlp_pipeline(prompt, max_length=200, num_return_sequences=1)
|
95 |
+
return response[0]['generated_text']
|
96 |
+
except Exception as e:
|
97 |
+
error_trace = traceback.format_exc()
|
98 |
+
return f"Error generating response: {e}\n{error_trace}"
|
99 |
+
|
100 |
+
def process_input(audio):
|
101 |
+
"""
|
102 |
+
Comprehensive input processing with robust error handling
|
103 |
+
|
104 |
+
Args:
|
105 |
+
audio (tuple): Gradio audio upload data
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
Tuple of processing results or error messages
|
109 |
+
"""
|
110 |
+
try:
|
111 |
+
if audio is None:
|
112 |
+
return (
|
113 |
+
"No audio file uploaded",
|
114 |
+
"Please upload an audio file",
|
115 |
+
None,
|
116 |
+
"No Braille conversion",
|
117 |
+
"Error: No input provided"
|
118 |
+
)
|
119 |
+
|
120 |
+
text_input = safe_speech_to_text(audio)
|
121 |
+
|
122 |
+
if not text_input or len(text_input) < 3:
|
123 |
+
return (
|
124 |
+
"Audio recognition failed",
|
125 |
+
"Could not understand the audio. Please try again.",
|
126 |
+
None,
|
127 |
+
"No Braille conversion",
|
128 |
+
"Error: Unable to recognize speech"
|
129 |
+
)
|
130 |
+
|
131 |
+
response_text = generate_educational_response(text_input)
|
132 |
+
audio_output_path = text_to_speech(response_text)
|
133 |
+
braille_text = ' '.join([f"β {char}" for char in response_text])
|
134 |
+
learning_guide = (
|
135 |
+
"π Learning Guide π\n"
|
136 |
+
f"Original Question: {text_input}\n\n"
|
137 |
+
"Tip: Each Braille character is formed by a unique combination of raised dots.\n"
|
138 |
+
"Practice tracing the dots to understand the pattern."
|
139 |
+
)
|
140 |
+
|
141 |
+
return (
|
142 |
+
text_input, # Recognized speech
|
143 |
+
response_text, # Educational response
|
144 |
+
audio_output_path, # Audio response path
|
145 |
+
braille_text, # Basic Braille text
|
146 |
+
learning_guide # Simple learning guide
|
147 |
+
)
|
148 |
+
|
149 |
+
except Exception as e:
|
150 |
+
error_trace = traceback.format_exc()
|
151 |
+
return (
|
152 |
+
"Processing Error",
|
153 |
+
f"An unexpected error occurred: {e}",
|
154 |
+
None,
|
155 |
+
"Error in Braille conversion",
|
156 |
+
f"Detailed Error:\n{error_trace}"
|
157 |
+
)
|
158 |
+
|
159 |
+
# Gradio Interface with Error Handling
|
160 |
+
interface = gr.Interface(
|
161 |
+
fn=process_input,
|
162 |
+
inputs=gr.Audio(label="Upload Audio (MP3/WAV)", type="numpy"),
|
163 |
+
outputs=[
|
164 |
+
gr.Textbox(label="Recognized Question"),
|
165 |
+
gr.Textbox(label="Educational Response"),
|
166 |
+
gr.Audio(label="Response Audio"),
|
167 |
+
gr.Textbox(label="Braille Representation"),
|
168 |
+
gr.Textbox(label="Learning Guide", lines=8)
|
169 |
+
],
|
170 |
+
title="π Accessible Learning Companion",
|
171 |
+
description="Upload an audio file to get an educational explanation, audio response, and Braille representation."
|
172 |
+
)
|
173 |
+
|
174 |
+
# Launch the interface
|
175 |
+
interface.launch(debug=True)
|