Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import spacy
|
4 |
+
import nltk
|
5 |
+
import re
|
6 |
+
import PyPDF2
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
from transformers import pipeline
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
+
|
13 |
+
# Download necessary NLTK resources
|
14 |
+
nltk.download('punkt')
|
15 |
+
|
16 |
+
# Load spaCy and Sentence Transformer models
|
17 |
+
nlp = spacy.load('en_core_web_sm')
|
18 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
19 |
+
|
20 |
+
# Check for GPU availability
|
21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
print(f"Running on: {device}")
|
23 |
+
|
24 |
+
|
25 |
+
# Updated career database
|
26 |
+
CAREER_RECOMMENDATIONS = [
|
27 |
+
{"title": "Software Engineer", "description": "Develops software applications and systems", "skills":["Python","Java","C++","JavaScript", "Software Development","Database Management","Web Development", "Cloud Computing","Data Structures", "Algorithms"]},
|
28 |
+
{"title": "Data Scientist", "description": "Analyzes complex data to help make business decisions","skills": ["Python","R","Statistics","Machine Learning","Data Visualization","Data Analysis","SQL"]},
|
29 |
+
{"title": "Cloud Solutions Architect", "description": "Designs and manages cloud computing strategies","skills":["Cloud Computing","AWS","Azure","GCP","Infrastructure as Code","Networking"]},
|
30 |
+
{"title": "AI/ML Engineer", "description": "Creates intelligent systems and machine learning models","skills": ["Machine Learning", "Deep Learning", "Neural Networks", "TensorFlow", "PyTorch","Computer Vision","Natural Language Processing"]},
|
31 |
+
{"title":"Database Administrator","description":"Manage databases, ensure data security","skills":["SQL", "Database Management", "Database Security", "Database Design","Database Modeling"]},
|
32 |
+
{"title": "Mechanical Engineer", "description": "Designs, develops, and tests mechanical devices and systems","skills": ["CAD","CAM","Matlab","Mechanical Design", "Manufacturing Engineering", "Quality Control", "Thermal Engineering", "Fluid Mechanics", "GD&T","Engineering Drawings","Blueprint reading","Product Design","FEA Analysis"]},
|
33 |
+
{"title": "Manufacturing Engineer", "description": "Optimizes manufacturing processes for efficiency and quality","skills": ["Manufacturing Engineering","Process Optimization","Lean Manufacturing","Six Sigma","Production Planning","Supply Chain Management"]},
|
34 |
+
{"title":"Quality Engineer","description":"Oversees quality assurance activities and ensures products meet standards.","skills":["Quality Control","Quality Assurance","ISO Standards","Statistical Process Control","Inspection","Testing"]},
|
35 |
+
{"title": "Design Engineer", "description": "Creates product designs and technical drawings using CAD software","skills": ["CAD","CAM","Product Design","3D Modeling","Engineering Design","Drafting"]},
|
36 |
+
{"title": "Business Analyst", "description": "Identifies business needs and determines solutions","skills": ["Business Analysis", "Requirements Gathering", "Data Analysis", "Process Improvement", "Project Management"]},
|
37 |
+
{"title": "Marketing Manager", "description": "Develops and implements marketing strategies","skills":["Marketing","Digital Marketing","Social Media Marketing","Market Research","Branding","Advertising", "Content Marketing"]},
|
38 |
+
{"title": "Project Manager", "description": "Leads and coordinates project teams and resources","skills":["Project Management","Project Planning","Risk Management","Team Management","Agile Methodologies"]},
|
39 |
+
{"title": "Management Consultant", "description": "Advises organizations on improving performance","skills":["Consulting","Strategy","Problem Solving","Business Analysis","Communication"]},
|
40 |
+
{"title": "Graphic Designer", "description": "Creates visual concepts using computer software or by hand","skills": ["Graphic Design","Adobe Photoshop","Adobe Illustrator","UI/UX Design","Visual Communication","Branding"]},
|
41 |
+
{"title": "Content Strategist", "description": "Develops content plans and marketing strategies","skills":["Content Writing","Content Strategy","SEO","Content Marketing","Copywriting"]},
|
42 |
+
{"title": "UI/UX Designer", "description": "Designs user interfaces for digital products","skills":["UI Design","UX Design","Wireframing","Prototyping","User Research","Interaction Design"]},
|
43 |
+
{"title": "Digital Marketing Specialist", "description": "Promotes brands and products through digital channels","skills":["Digital Marketing","Social Media Marketing","SEO","PPC Advertising","Email Marketing","Content Marketing"]},
|
44 |
+
{"title": "Healthcare Administrator", "description": "Manages healthcare facilities and services","skills":["Healthcare Administration","Healthcare Management","Healthcare Policy","Healthcare Finance","Patient Care"]},
|
45 |
+
{"title": "Medical Researcher", "description": "Conducts research to improve medical knowledge","skills":["Medical Research","Data Analysis","Research Design","Laboratory Techniques","Scientific Writing"]},
|
46 |
+
{"title": "Healthcare Consultant", "description": "Advises healthcare organizations on improvement strategies","skills":["Healthcare Consulting", "Healthcare Strategy","Healthcare Operations","Healthcare Policy"]},
|
47 |
+
{"title":"Medical Assistant","description": "Assists with patient care and medical administrative tasks.","skills":["Patient Care","Medical Terminology","Medical Assisting","Clinical Procedures","Vital Signs","Electronic Health Records"]}
|
48 |
+
]
|
49 |
+
|
50 |
+
def extract_text_from_pdf(file_path):
|
51 |
+
"""
|
52 |
+
Extract text from PDF file
|
53 |
+
|
54 |
+
Args:
|
55 |
+
file_path (str): Path to the PDF file
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
str: Extracted text from the PDF
|
59 |
+
"""
|
60 |
+
try:
|
61 |
+
with open(file_path, 'rb') as file:
|
62 |
+
reader = PyPDF2.PdfReader(file)
|
63 |
+
text = ''
|
64 |
+
for page in reader.pages:
|
65 |
+
text += page.extract_text() + '\n'
|
66 |
+
return text
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Error extracting PDF text: {e}")
|
69 |
+
return ""
|
70 |
+
def preprocess_cv_text(text):
|
71 |
+
"""
|
72 |
+
Preprocess CV text for analysis
|
73 |
+
|
74 |
+
Args:
|
75 |
+
text (str): Raw CV text
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
dict: Processed CV information
|
79 |
+
"""
|
80 |
+
# Normalize text
|
81 |
+
text = text.lower()
|
82 |
+
|
83 |
+
# Extract key sections with more flexible regex
|
84 |
+
sections = {
|
85 |
+
'contact': re.findall(r'(email|phone|contact)[:\s]*([^\n]+)', text),
|
86 |
+
'education': re.findall(r'(education|qualification|academic)[:\s]*(.*?)(?=\n\n|\n(?:work|experience|skills|projects|training|hobbies|personal|declaration))', text, re.DOTALL | re.IGNORECASE),
|
87 |
+
'experience': re.findall(r'(experience|work)[:\s]*(.*?)(?=\n\n|\n(?:education|skills|projects|training|hobbies|personal|declaration))', text, re.DOTALL | re.IGNORECASE),
|
88 |
+
'skills': re.findall(r'(skills|expertise|technical skills)[:\s]*(.*?)(?=\n\n|\n(?:education|work|projects|training|hobbies|personal|declaration))', text, re.DOTALL | re.IGNORECASE),
|
89 |
+
'projects': re.findall(r'(projects)[:\s]*(.*?)(?=\n\n|\n(?:education|work|skills|training|hobbies|personal|declaration))', text, re.DOTALL | re.IGNORECASE),
|
90 |
+
'training': re.findall(r'(training|certification)[:\s]*(.*?)(?=\n\n|\n(?:education|work|skills|projects|hobbies|personal|declaration))', text, re.DOTALL | re.IGNORECASE),
|
91 |
+
'hobbies': re.findall(r'(hobbies|interests)[:\s]*(.*?)(?=\n\n|\n(?:education|work|skills|projects|training|personal|declaration))', text, re.DOTALL | re.IGNORECASE),
|
92 |
+
'personal': re.findall(r'(personal details)[:\s]*(.*?)(?=\n\n|\n(?:education|work|skills|projects|training|hobbies|declaration))', text, re.DOTALL | re.IGNORECASE)
|
93 |
+
}
|
94 |
+
|
95 |
+
# Process extracted sections
|
96 |
+
processed_sections = {}
|
97 |
+
for key, matches in sections.items():
|
98 |
+
if matches:
|
99 |
+
processed_sections[key] = " ".join([match[1].strip() for match in matches]) #Combine all matches into one string
|
100 |
+
|
101 |
+
return processed_sections
|
102 |
+
|
103 |
+
def analyze_cv_skills(cv_text):
|
104 |
+
"""
|
105 |
+
Analyze skills from CV and recommend career paths based on combined scores.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
cv_text (str): Processed CV text
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
dict: Career recommendations and analysis
|
112 |
+
"""
|
113 |
+
# Preprocess CV
|
114 |
+
cv_info = preprocess_cv_text(cv_text)
|
115 |
+
|
116 |
+
# Extract skills and keywords
|
117 |
+
all_skills = []
|
118 |
+
all_hobbies = []
|
119 |
+
all_qualifications = []
|
120 |
+
all_experience = []
|
121 |
+
|
122 |
+
#Skill Extraction
|
123 |
+
if 'skills' in cv_info:
|
124 |
+
skill_text = cv_info['skills']
|
125 |
+
doc = nlp(skill_text)
|
126 |
+
all_skills.extend([ent.text for ent in doc.ents if ent.label_ in ['SKILL', 'ORG','PRODUCT']]) #Add Org and Product
|
127 |
+
all_skills.extend([token.text for token in doc if token.pos_ in ['NOUN', 'ADJ']])
|
128 |
+
# Manually extract skills based on keyword
|
129 |
+
skill_keywords = ["AutoCAD", "Manufacturing Engineering", "Quality Control", "Thermal Engineering", "Heat Transfer","Machine Design", "Fluid Mechanics","CAD","CAM", "Matlab","GD&T","Engineering Drawings","Blueprint reading","Product Design","FEA Analysis",
|
130 |
+
"Project Management", "Marketing", "Business Analysis", "Sales", "Finance", "Consulting", "Market Research",
|
131 |
+
"Graphic Design", "Content Writing", "Digital Marketing", "UI/UX Design", "Video Production","SEO","Social Media Marketing",
|
132 |
+
"Patient Care", "Medical Research", "Healthcare Administration", "Medical Technology", "Anatomy", "Physiology","Pharmacology","Python", "Java", "Machine Learning", "Data Science", "Cloud Computing", "Cybersecurity", "Web Development", "Software Development", "Database Management",
|
133 |
+
"SQL", "C++", "JavaScript","AWS", "Azure", "GCP", "Infrastructure as Code", "Networking", "Deep Learning", "Neural Networks", "TensorFlow", "PyTorch","Computer Vision","Natural Language Processing","R","Statistics", "Data Visualization", "Data Analysis","Agile Methodologies",
|
134 |
+
"Adobe Photoshop", "Adobe Illustrator", "Visual Communication", "Branding", "Copywriting", "Wireframing","Prototyping","User Research","Interaction Design","PPC Advertising","Email Marketing","Healthcare Management", "Healthcare Policy", "Healthcare Finance",
|
135 |
+
"Medical Terminology", "Clinical Procedures", "Vital Signs", "Electronic Health Records","Lean Manufacturing","Six Sigma","Production Planning","Supply Chain Management","ISO Standards", "Statistical Process Control","Inspection","Testing",
|
136 |
+
"Requirements Gathering","Process Improvement"]
|
137 |
+
all_skills.extend([keyword for keyword in skill_keywords if keyword.lower() in skill_text.lower()])
|
138 |
+
# Experience Extraction
|
139 |
+
if 'experience' in cv_info:
|
140 |
+
exp_doc = nlp(cv_info['experience'])
|
141 |
+
all_experience.extend([token.text for token in exp_doc if token.pos_ in ['NOUN', 'VERB']])
|
142 |
+
# Manually extract skills based on keywords
|
143 |
+
exp_keywords = ["blueprints", "specifications","production","inspection", "testing","measurement","calipers",
|
144 |
+
"gauges","micrometers","quality standards","production process","finished items","inspection results", "test data","training", "design", "development","analysis", "management",
|
145 |
+
"research", "consulting"]
|
146 |
+
all_experience.extend([keyword for keyword in exp_keywords if keyword.lower() in cv_info['experience'].lower()])
|
147 |
+
|
148 |
+
#Project extraction
|
149 |
+
if 'projects' in cv_info:
|
150 |
+
proj_doc = nlp(cv_info['projects'])
|
151 |
+
all_experience.extend([token.text for token in proj_doc if token.pos_ in ['NOUN','VERB']]) #Add nouns and verbs
|
152 |
+
# Manually extract skills based on keywords
|
153 |
+
proj_keywords = ["helicopter", "assembly", "dismantling","5S methodology","flow path","material","productivity","layout"]
|
154 |
+
all_experience.extend([keyword for keyword in proj_keywords if keyword.lower() in cv_info['projects'].lower()])
|
155 |
+
|
156 |
+
#Training extraction
|
157 |
+
if 'training' in cv_info:
|
158 |
+
train_doc = nlp(cv_info['training'])
|
159 |
+
all_experience.extend([token.text for token in train_doc if token.pos_ in ['NOUN','VERB']])
|
160 |
+
# Manually extract skills based on keywords
|
161 |
+
train_keywords = ["inplant training"]
|
162 |
+
all_experience.extend([keyword for keyword in train_keywords if keyword.lower() in cv_info['training'].lower()])
|
163 |
+
|
164 |
+
#Hobby Extraction
|
165 |
+
if 'hobbies' in cv_info:
|
166 |
+
hobby_doc = nlp(cv_info['hobbies'])
|
167 |
+
all_hobbies.extend([token.text for token in hobby_doc if token.pos_ in ['NOUN','VERB','ADJ']]) #Add all POS tags
|
168 |
+
|
169 |
+
#Qualification Extraction
|
170 |
+
if 'education' in cv_info:
|
171 |
+
qual_doc = nlp(cv_info['education'])
|
172 |
+
all_qualifications.extend([token.text for token in qual_doc if token.pos_ in ['NOUN','ADJ']])
|
173 |
+
qual_keywords = ["engineering", "diploma", "bachelor", "master", "degree", "computer science", "information technology","business administration","medical","healthcare"]
|
174 |
+
all_qualifications.extend([keyword for keyword in qual_keywords if keyword.lower() in cv_info['education'].lower()])
|
175 |
+
|
176 |
+
# Remove duplicates and convert to lowercase
|
177 |
+
all_skills = list(set(skill.lower() for skill in all_skills if len(skill) > 2))
|
178 |
+
all_hobbies = list(set(hobby.lower() for hobby in all_hobbies if len(hobby)>2))
|
179 |
+
all_qualifications = list(set(qualification.lower() for qualification in all_qualifications if len(qualification) > 2))
|
180 |
+
all_experience = list(set(exp.lower() for exp in all_experience if len(exp)>2))
|
181 |
+
|
182 |
+
# Calculate similarity scores for each career recommendation
|
183 |
+
career_scores = []
|
184 |
+
for career in CAREER_RECOMMENDATIONS:
|
185 |
+
#Embed career skills and CV skills
|
186 |
+
career_skill_embeddings = embedding_model.encode(career['skills'])
|
187 |
+
cv_skill_embeddings = embedding_model.encode(all_skills)
|
188 |
+
|
189 |
+
#Embed CV sections
|
190 |
+
cv_hobby_embeddings = embedding_model.encode(all_hobbies)
|
191 |
+
cv_qualifications_embeddings = embedding_model.encode(all_qualifications)
|
192 |
+
cv_experience_embeddings = embedding_model.encode(all_experience)
|
193 |
+
|
194 |
+
total_similarity = 0
|
195 |
+
skills_similarity = 0
|
196 |
+
hobby_similarity = 0
|
197 |
+
qualification_similarity =0
|
198 |
+
experience_similarity = 0
|
199 |
+
#Calculate Similarity Score for skills
|
200 |
+
if len(cv_skill_embeddings) > 0:
|
201 |
+
similarities = cosine_similarity(career_skill_embeddings, cv_skill_embeddings)
|
202 |
+
skills_similarity= np.max(similarities) #Use max instead of avg
|
203 |
+
#Calculate similarity score for hobbies
|
204 |
+
if len(cv_hobby_embeddings) > 0:
|
205 |
+
similarities = cosine_similarity(embedding_model.encode([", ".join(career['skills'])]),cv_hobby_embeddings)
|
206 |
+
hobby_similarity = np.max(similarities)
|
207 |
+
|
208 |
+
#Calculate similarity score for qualification
|
209 |
+
if len(cv_qualifications_embeddings) > 0:
|
210 |
+
similarities = cosine_similarity(embedding_model.encode([", ".join(career['skills'])]),cv_qualifications_embeddings)
|
211 |
+
qualification_similarity = np.max(similarities)
|
212 |
+
#Calculate similarity score for experience
|
213 |
+
if len(cv_experience_embeddings) >0:
|
214 |
+
similarities = cosine_similarity(embedding_model.encode([", ".join(career['skills'])]),cv_experience_embeddings)
|
215 |
+
experience_similarity = np.max(similarities)
|
216 |
+
|
217 |
+
#Calculate weighted sum of similarities
|
218 |
+
total_similarity = (0.5*skills_similarity) + (0.1*hobby_similarity) + (0.2*qualification_similarity) + (0.2*experience_similarity)
|
219 |
+
career_scores.append({
|
220 |
+
'title': career['title'],
|
221 |
+
'description': career['description'],
|
222 |
+
'score': total_similarity,
|
223 |
+
'matched_skills': all_skills,
|
224 |
+
'matched_hobbies':all_hobbies,
|
225 |
+
'matched_qualifications':all_qualifications,
|
226 |
+
'matched_experience':all_experience
|
227 |
+
})
|
228 |
+
# Sort careers by similarity score
|
229 |
+
ranked_careers = sorted(career_scores, key=lambda x: x['score'], reverse=True)
|
230 |
+
|
231 |
+
# Prepare recommendation report
|
232 |
+
report = "### Career Recommendation Analysis\n\n"
|
233 |
+
report += "**Top Career Recommendations**:\n"
|
234 |
+
for career in ranked_careers[:5]: # Display top 5 recommendations
|
235 |
+
report += f"- **{career['title']}**\n"
|
236 |
+
report += f" *{career['description']}*\n"
|
237 |
+
report += f" *Similarity Score: {career['score']:.2f}*\n"
|
238 |
+
|
239 |
+
report += "\n**Skills Match**:\n"
|
240 |
+
report += "- Identified Skills: " + ", ".join(ranked_careers[0]['matched_skills']) + "\n\n"
|
241 |
+
|
242 |
+
report += "**Hobbies Match**:\n"
|
243 |
+
report += "- Identified Hobbies: " + ", ".join(ranked_careers[0]['matched_hobbies']) + "\n\n"
|
244 |
+
|
245 |
+
report += "**Qualification Match**:\n"
|
246 |
+
report += "- Identified Qualifications: " + ", ".join(ranked_careers[0]['matched_qualifications']) + "\n\n"
|
247 |
+
|
248 |
+
report += "**Experience Match**:\n"
|
249 |
+
report += "- Identified Experience: " + ", ".join(ranked_careers[0]['matched_experience']) + "\n\n"
|
250 |
+
|
251 |
+
return report
|
252 |
+
|
253 |
+
def cv_skill_assessment(cv_file):
|
254 |
+
"""
|
255 |
+
Main function to process uploaded CV and provide skill assessment
|
256 |
+
|
257 |
+
Args:
|
258 |
+
cv_file (str): Path to uploaded CV file
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
str: Skill assessment and career recommendations
|
262 |
+
"""
|
263 |
+
try:
|
264 |
+
# Extract text from PDF
|
265 |
+
cv_text = extract_text_from_pdf(cv_file)
|
266 |
+
|
267 |
+
# If PDF extraction fails, try direct text processing
|
268 |
+
if not cv_text.strip():
|
269 |
+
with open(cv_file, 'r', encoding='utf-8') as f:
|
270 |
+
cv_text = f.read()
|
271 |
+
|
272 |
+
# Analyze CV and get recommendations
|
273 |
+
assessment = analyze_cv_skills(cv_text)
|
274 |
+
|
275 |
+
return assessment
|
276 |
+
|
277 |
+
except Exception as e:
|
278 |
+
return f"Error processing CV: {str(e)}"
|
279 |
+
|
280 |
+
# Create Gradio Interface
|
281 |
+
def launch_cv_skill_assessment_app():
|
282 |
+
"""
|
283 |
+
Launch the CV Skill Assessment AI Gradio Interface
|
284 |
+
"""
|
285 |
+
demo = gr.Interface(
|
286 |
+
fn=cv_skill_assessment,
|
287 |
+
inputs=gr.File(label="Upload Your CV (PDF/Text)", type="filepath"),
|
288 |
+
outputs=gr.Markdown(label="Career Recommendation Report"),
|
289 |
+
title="🚀 CV Skills Assessment AI",
|
290 |
+
description="""
|
291 |
+
Discover your ideal career path based on your CV!
|
292 |
+
|
293 |
+
*How to use*:
|
294 |
+
1. Upload your CV (PDF or Text file)
|
295 |
+
2. Our AI analyzes your skills, experience, and background
|
296 |
+
3. Receive personalized career recommendations
|
297 |
+
|
298 |
+
*Features*:
|
299 |
+
- Advanced CV parsing
|
300 |
+
- Skill extraction
|
301 |
+
- Domain-based career matching
|
302 |
+
- Detailed recommendation report
|
303 |
+
""",
|
304 |
+
theme="huggingface"
|
305 |
+
)
|
306 |
+
|
307 |
+
demo.launch(debug=True)
|
308 |
+
|
309 |
+
# Run the application
|
310 |
+
launch_cv_skill_assessment_app()
|