|
import pandas as pd |
|
import gradio as gr |
|
import logging |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
from transformers import MarianMTModel, MarianTokenizer |
|
from gtts import gTTS |
|
import tempfile |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
class MultilingualGitaAnalyzer: |
|
def __init__(self, csv_path='Bhagwad_Gita.csv'): |
|
"""Initialize the Bhagavad Gita Analyzer with multilingual support.""" |
|
logger.info("Initializing Multilingual Bhagavad Gita Analyzer") |
|
self.df = None |
|
self.vectorizer = None |
|
self.tfidf_matrix = None |
|
self.translation_model_to_en = None |
|
self.translation_tokenizer_to_en = None |
|
self.translation_models_from_en = {} |
|
self.translation_tokenizers_from_en = {} |
|
self.load_translation_models() |
|
self.load_dataset(csv_path) |
|
|
|
def load_translation_models(self): |
|
"""Load translation models for multilingual support.""" |
|
try: |
|
|
|
logger.info("Loading MarianMT translation model for multi-language to English...") |
|
self.translation_tokenizer_to_en = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-mul-en") |
|
self.translation_model_to_en = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-mul-en") |
|
logger.info("Translation model for multi-language to English loaded successfully.") |
|
|
|
|
|
languages = ["hi", "es", "fr"] |
|
for lang in languages: |
|
model_name = f"Helsinki-NLP/opus-mt-en-{lang}" |
|
logger.info(f"Loading MarianMT translation model for English to {lang}...") |
|
self.translation_tokenizers_from_en[lang] = MarianTokenizer.from_pretrained(model_name) |
|
self.translation_models_from_en[lang] = MarianMTModel.from_pretrained(model_name) |
|
logger.info(f"Translation model for English to {lang} loaded successfully.") |
|
except Exception as e: |
|
logger.error(f"Error loading translation models: {e}") |
|
self.translation_tokenizer_to_en = None |
|
self.translation_model_to_en = None |
|
self.translation_models_from_en = {} |
|
self.translation_tokenizers_from_en = {} |
|
|
|
def translate_to_english(self, text): |
|
"""Translate text to English using MarianMT.""" |
|
try: |
|
if not self.translation_model_to_en or not self.translation_tokenizer_to_en: |
|
return text |
|
inputs = self.translation_tokenizer_to_en(text, return_tensors="pt", truncation=True) |
|
outputs = self.translation_model_to_en.generate(**inputs) |
|
return self.translation_tokenizer_to_en.decode(outputs[0], skip_special_tokens=True) |
|
except Exception as e: |
|
logger.error(f"Error during translation to English: {e}") |
|
return text |
|
|
|
def translate_from_english(self, text, target_language="en"): |
|
"""Translate from English to the selected target language.""" |
|
try: |
|
if target_language == "en": |
|
return text |
|
|
|
lang_code = {"Hindi": "hi", "Spanish": "es", "French": "fr"}.get(target_language, "en") |
|
if lang_code == "en": |
|
return text |
|
|
|
|
|
tokenizer = self.translation_tokenizers_from_en.get(lang_code) |
|
model = self.translation_models_from_en.get(lang_code) |
|
if not tokenizer or not model: |
|
return text |
|
|
|
inputs = tokenizer(text, return_tensors="pt", truncation=True) |
|
outputs = model.generate(**inputs) |
|
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return translated_text |
|
except Exception as e: |
|
logger.error(f"Error during reverse translation: {e}") |
|
return text |
|
|
|
def load_dataset(self, csv_path): |
|
"""Load and preprocess the Bhagavad Gita dataset.""" |
|
try: |
|
self.df = pd.read_csv(csv_path) |
|
logger.info(f"Dataset loaded successfully with {len(self.df)} rows.") |
|
|
|
required_columns = {'ID', 'Chapter', 'Verse', 'EngMeaning'} |
|
missing_columns = required_columns - set(self.df.columns) |
|
if missing_columns: |
|
raise ValueError(f"Missing required columns: {missing_columns}") |
|
|
|
self.df['Chapter'] = self.df['Chapter'].fillna('').astype(str) |
|
self.df['Verse'] = self.df['Verse'].fillna('').astype(str) |
|
self.df['EngMeaning'] = self.df['EngMeaning'].fillna('').astype(str) |
|
|
|
self.vectorizer = TfidfVectorizer(stop_words='english') |
|
self.tfidf_matrix = self.vectorizer.fit_transform(self.df['EngMeaning']) |
|
except Exception as e: |
|
logger.error(f"Error loading dataset: {e}") |
|
self.df = None |
|
self.vectorizer = None |
|
self.tfidf_matrix = None |
|
|
|
def semantic_search(self, query, top_k=3): |
|
"""Search for similar verses based on a query.""" |
|
try: |
|
if self.df is None or self.vectorizer is None or self.tfidf_matrix is None: |
|
return ["Dataset not loaded or vectorizer not initialized."] |
|
|
|
query_vector = self.vectorizer.transform([query]) |
|
cosine_similarities = cosine_similarity(query_vector, self.tfidf_matrix).flatten() |
|
top_indices = cosine_similarities.argsort()[-top_k:][::-1] |
|
|
|
results = [] |
|
for idx in top_indices: |
|
verse = self.df.iloc[idx] |
|
chapter = verse['Chapter'] |
|
verse_number = verse['Verse'] |
|
eng_meaning = verse['EngMeaning'] |
|
results.append(f"Chapter {chapter} - Verse {verse_number}: {eng_meaning}") |
|
return results |
|
except Exception as e: |
|
logger.error(f"Error in semantic search: {e}") |
|
return ["An error occurred during semantic search."] |
|
|
|
def generate_audio(self, text): |
|
"""Generate audio from the given text.""" |
|
try: |
|
tts = gTTS(text=text, lang='en') |
|
audio_path = 'generated_audio.mp3' |
|
tts.save(audio_path) |
|
return audio_path |
|
except Exception as e: |
|
logger.error(f"Error generating audio: {e}") |
|
return None |
|
|
|
def gradio_interface(self): |
|
"""Create a Gradio interface for the Bhagavad Gita Analyzer.""" |
|
def process_query(question, preferred_language): |
|
try: |
|
|
|
if preferred_language != "English": |
|
question_in_english = self.translate_to_english(question) |
|
logger.info(f"Translated query to English: {question_in_english}") |
|
else: |
|
question_in_english = question |
|
|
|
|
|
results = self.semantic_search(question_in_english) |
|
|
|
|
|
translated_results = [ |
|
self.translate_from_english(res, target_language=preferred_language) |
|
for res in results |
|
] |
|
|
|
|
|
explanation = "In simple terms, duty means doing what you are supposed to do. It's like your responsibilities or tasks that you need to complete. In today's world, it could be your job, taking care of your family, or helping others. It's about doing the right thing, even when it's hard." |
|
translated_explanation = self.translate_from_english(explanation, target_language=preferred_language) |
|
|
|
|
|
story = "\n\n".join(translated_results) + "\n\n" + translated_explanation |
|
|
|
|
|
audio_path = self.generate_audio(story) |
|
|
|
return story, audio_path |
|
except Exception as e: |
|
logger.error(f"Error processing query: {e}") |
|
return "An unexpected error occurred.", None |
|
|
|
def daily_quote(): |
|
|
|
return "Daily Quote: 'The journey of a thousand miles begins with one step.' - Lao Tzu" |
|
|
|
def quiz(): |
|
|
|
questions = [ |
|
{ |
|
"question": "What is the meaning of duty?", |
|
"options": ["A responsibility", "A hobby", "A choice", "A luxury"], |
|
"answer": "A responsibility" |
|
}, |
|
|
|
] |
|
return questions |
|
|
|
iface = gr.Blocks() |
|
|
|
with iface: |
|
gr.Markdown("# Multilingual Vedas Wisdom Finder") |
|
gr.Markdown("Ask questions in any language and get wisdom in your preferred language.") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
question = gr.Textbox(label="Ask a Question") |
|
preferred_language = gr.Dropdown(["English", "Hindi", "Spanish", "French"], label="Preferred Language") |
|
submit_btn = gr.Button("Submit") |
|
|
|
with gr.Column(): |
|
output = gr.Textbox(label="Vedas Wisdom Story") |
|
audio_output = gr.Audio(label="Relevant Audio") |
|
|
|
submit_btn.click(process_query, inputs=[question, preferred_language], outputs=[output, audio_output]) |
|
|
|
gr.Markdown("## Daily Quote") |
|
daily_quote_output = gr.Textbox(label="Daily Quote", value=daily_quote()) |
|
|
|
gr.Markdown("## Interactive Quiz") |
|
quiz_questions = quiz() |
|
for q in quiz_questions: |
|
gr.Markdown(f"**{q['question']}**") |
|
gr.Radio(q['options'], label="Select your answer") |
|
|
|
gr.Markdown("## Audio Verses") |
|
gr.Audio(label="Listen to a Verse", value="verse1.mp3") |
|
|
|
return iface |
|
|
|
def main(): |
|
analyzer = MultilingualGitaAnalyzer('Bhagwad_Gita.csv') |
|
interface = analyzer.gradio_interface() |
|
interface.launch(share=True) |
|
|
|
if __name__ == "__main__": |
|
main() |