pyanote / app.py
Anustup's picture
Create app.py
a929b20
raw
history blame
4.28 kB
import gradio as gr
import numpy as np
import os, time, librosa, torch
from pyannote.audio import Pipeline
from transformers import pipeline
from utils import second_to_timecode, download_from_youtube
MODEL_NAME = 'openai/whisper-medium'
lang = 'en'
chunk_length_s = 9
vad_activation_min_duration = 9 # sec
device = 0 if torch.cuda.is_available() else "cpu"
SAMPLE_RATE = 16_000
######## LOAD MODELS FROM HUB ########
dia_model = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=os.environ['TOKEN'])
vad_model = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=os.environ['TOKEN'])
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=chunk_length_s, device=device)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
print("----------> Loaded models <-----------")
def generator(youtube_link, microphone, file_upload, num_speakers, max_duration, history):
if int(youtube_link != '') + int(microphone is not None) + int(file_upload is not None) != 1:
raise Exception(f"Only one of the source should be given youtube_link={youtube_link}, microphone={microphone}, file_upload={file_upload}")
history = history or ""
if microphone:
path = microphone
elif file_upload:
path = file_upload
elif youtube_link:
path = download_from_youtube(youtube_link)
waveform, sampling_rate = librosa.load(path, sr=SAMPLE_RATE, mono=True, duration=max_duration)
print(waveform.shape, sampling_rate)
waveform_tensor = torch.unsqueeze(torch.tensor(waveform), 0).to(device)
dia_result = dia_model({
"waveform": waveform_tensor,
"sample_rate": sampling_rate,
}, num_speakers=num_speakers)
for speech_turn, track, speaker in dia_result.itertracks(yield_label=True):
print(f"{speech_turn.start:4.1f} {speech_turn.end:4.1f} {speaker}")
_start = int(sampling_rate * speech_turn.start)
_end = int(sampling_rate * speech_turn.end)
data = waveform[_start: _end]
if speech_turn.end - speech_turn.start > vad_activation_min_duration:
print(f'audio duration {speech_turn.end - speech_turn.start} sec ----> activating VAD')
vad_output = vad_model({
'waveform': waveform_tensor[:, _start:_end],
'sample_rate': sampling_rate})
for vad_turn in vad_output.get_timeline().support():
vad_start = _start + int(sampling_rate * vad_turn.start)
vad_end = _start + int(sampling_rate * vad_turn.end)
prediction = pipe(waveform[vad_start: vad_end])['text']
history += f"{second_to_timecode(speech_turn.start + vad_turn.start)},{second_to_timecode(speech_turn.start + vad_turn.end)}\n" + \
f"{prediction}\n\n"
# f">> {speaker}: {prediction}\n\n"
yield history, history, None
else:
prediction = pipe(data)['text']
history += f"{second_to_timecode(speech_turn.start)},{second_to_timecode(speech_turn.end)}\n" + \
f"{prediction}\n\n"
# f">> {speaker}: {prediction}\n\n"
yield history, history, None
# https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats%2Csubrip-srt-example%2Csubviewer-sbv-example
file_name = 'transcript.sbv'
with open(file_name, 'w') as fp:
fp.write(history)
yield history, history, file_name
demo = gr.Interface(
generator,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL", optional=True),
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
gr.Number(value=1, label="Number of Speakers"),
gr.Number(value=120, label="Maximum Duration (Seconds)"),
'state',
],
outputs=['text', 'state', 'file'],
layout="horizontal",
theme="huggingface",
allow_flagging="never",
)
# define queue - required for generators
demo.queue()
demo.launch()