|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from datasets import load_dataset |
|
|
|
from transformers import VitsModel, VitsTokenizer, pipeline |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) |
|
|
|
model = VitsModel.from_pretrained("Matthijs/mms-tts-deu") |
|
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu") |
|
|
|
|
|
def translate(audio): |
|
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"}) |
|
return outputs["text"] |
|
|
|
|
|
def synthesise(text): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model(inputs["input_ids"]) |
|
|
|
speech = outputs.audio[0] |
|
return speech |
|
|
|
|
|
def speech_to_speech_translation(audio): |
|
translated_text = translate(audio) |
|
synthesised_speech = synthesise(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) |
|
return 16000, synthesised_speech |
|
|
|
|
|
title = "Cascaded STST" |
|
description = """ |
|
Demo for Italian to Dutch speech translation using OpenAI Whisper and MMS models |
|
""" |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(source="microphone", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
title=title, |
|
description=description, |
|
) |
|
|
|
file_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(source="upload", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
examples=[["./example.wav"]], |
|
title=title, |
|
description=description, |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) |
|
|
|
demo.launch() |
|
|