Spaces:
Paused
Paused
Commit
·
e34a2a6
1
Parent(s):
c102038
feat: added the AKN + limited search space version for the Chat-Eurlex
Browse files- EurLexChat.py +121 -79
- app.py +59 -21
- chat_utils.py +33 -9
- config.py +13 -3
- config.yaml +12 -5
- consts.py +73 -0
- requirements.txt +4 -3
EurLexChat.py
CHANGED
@@ -6,21 +6,26 @@ from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
6 |
from langchain_core.tools import StructuredTool
|
7 |
from langchain_core.utils.function_calling import convert_to_openai_tool
|
8 |
from langchain_core.messages import AIMessage
|
9 |
-
from typing import List
|
10 |
from chat_utils import get_init_modules, SYSTEM_PROMPT, SYSTEM_PROMPT_LOOP, ContextInput, Answer, get_vectorDB_module
|
11 |
from langchain_core.documents.base import Document
|
12 |
-
|
|
|
13 |
|
14 |
class EurLexChat:
|
15 |
def __init__(self, config: dict):
|
16 |
self.config = config
|
17 |
self.max_history_messages = self.config["max_history_messages"]
|
|
|
18 |
self.use_functions = (
|
19 |
-
'use_context_function' in config["llm"] and
|
20 |
-
config["llm"]["use_context_function"] and
|
21 |
config["llm"]["class"] == "ChatOpenAI")
|
22 |
|
23 |
-
self.embedder, self.llm, self.chatDB_class, self.retriever = get_init_modules(
|
|
|
|
|
|
|
24 |
self.max_context_size = config["llm"]["max_context_size"]
|
25 |
|
26 |
self.prompt = ChatPromptTemplate.from_messages([
|
@@ -43,17 +48,26 @@ class EurLexChat:
|
|
43 |
name="get_context",
|
44 |
description="To be used whenever the provided context is empty or the user changes the topic of the conversation and you need the context for the topic. " +
|
45 |
"This function must be called only when is strictly necessary. " +
|
46 |
-
"This function must not be called if you already have the information to answer the user. ",
|
47 |
args_schema=ContextInput
|
48 |
)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
54 |
else:
|
55 |
-
chain =
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
self.chain_with_history = RunnableWithMessageHistory(
|
58 |
chain,
|
59 |
self.get_chat_history,
|
@@ -61,8 +75,7 @@ class EurLexChat:
|
|
61 |
history_messages_key="history",
|
62 |
)
|
63 |
|
64 |
-
self.relevant_documents_pipeline = (
|
65 |
-
|
66 |
|
67 |
def _resize_history(self, input_dict):
|
68 |
"""
|
@@ -77,11 +90,10 @@ class EurLexChat:
|
|
77 |
|
78 |
messages = input_dict.messages
|
79 |
if (len(messages) - 2) > self.max_history_messages:
|
80 |
-
messages = [messages[0]] + messages[-(self.max_history_messages +1):]
|
81 |
input_dict.messages = messages
|
82 |
return input_dict
|
83 |
|
84 |
-
|
85 |
def get_chat_history(self, session_id: str):
|
86 |
"""
|
87 |
Retrieve chat history instance for a specific session ID.
|
@@ -108,7 +120,6 @@ class EurLexChat:
|
|
108 |
else:
|
109 |
return self.chatDB_class(session_id=session_id, **kwargs)
|
110 |
|
111 |
-
|
112 |
def _parse_documents(self, docs: List[Document]) -> List[dict]:
|
113 |
"""
|
114 |
Parse a list of documents into a standardized format.
|
@@ -126,11 +137,11 @@ class EurLexChat:
|
|
126 |
parsed_documents.append({
|
127 |
'text': doc.page_content,
|
128 |
'source': doc.metadata["source"],
|
|
|
129 |
'_id': doc.metadata["_id"]
|
130 |
})
|
131 |
return parsed_documents
|
132 |
|
133 |
-
|
134 |
def _format_context_docs(self, context_docs: List[dict]) -> str:
|
135 |
"""
|
136 |
Format a list of documents into a single string.
|
@@ -147,37 +158,107 @@ class EurLexChat:
|
|
147 |
context_str += doc['text'] + "\n\n"
|
148 |
return context_str
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
"""
|
153 |
Retrieve relevant documents based on a given question.
|
|
|
154 |
|
155 |
Args:
|
156 |
question (str): The question for which relevant documents are retrieved.
|
|
|
157 |
|
158 |
Returns:
|
159 |
List[dict]: A list of relevant documents.
|
160 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
163 |
return docs
|
164 |
|
165 |
-
|
166 |
-
def get_context(self, text:str) -> str:
|
167 |
"""
|
168 |
Retrieve context for a given text.
|
|
|
169 |
|
170 |
Args:
|
171 |
text (str): The text for which context is retrieved.
|
|
|
172 |
|
173 |
Returns:
|
174 |
str: A formatted string containing the relevant documents texts.
|
175 |
"""
|
176 |
|
177 |
-
docs = self.get_relevant_docs(text)
|
178 |
return self._format_context_docs(docs)
|
179 |
|
180 |
-
|
181 |
def _remove_last_messages(self, session_id:str, n:int) -> None:
|
182 |
"""
|
183 |
Remove last n messages from the chat history of a specific session.
|
@@ -193,7 +274,6 @@ class EurLexChat:
|
|
193 |
for message in message_history:
|
194 |
chat_history.add_message(message)
|
195 |
|
196 |
-
|
197 |
def _format_history(self, session_id:str) -> str:
|
198 |
"""
|
199 |
Format chat history for a specific session into a string.
|
@@ -211,8 +291,7 @@ class EurLexChat:
|
|
211 |
formatted_history += f"{message.type}: {message.content}\n\n"
|
212 |
return formatted_history
|
213 |
|
214 |
-
|
215 |
-
def _resize_context(self, context_docs:List[dict]) -> List[dict]:
|
216 |
"""
|
217 |
Resize the dimension of the context in terms of number of tokens.
|
218 |
If the concatenation of document text exceeds max_context_size,
|
@@ -232,16 +311,24 @@ class EurLexChat:
|
|
232 |
resized_contexts.append(context_docs[i])
|
233 |
total_len += l
|
234 |
return resized_contexts
|
235 |
-
|
236 |
-
def get_answer(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
"""
|
238 |
Get an answer to a question of a specific session, considering context documents and history messages.
|
|
|
239 |
|
240 |
Args:
|
241 |
session_id (str): The session ID for which the answer is retrieved.
|
242 |
question (str): The new user message.
|
243 |
context_docs (List[dict]): A list of documents used as context to answer the user message.
|
244 |
from_tool (bool, optional): Whether the question originates from a tool. Defaults to False.
|
|
|
245 |
|
246 |
Returns:
|
247 |
Answer: An object containing the answer along with a new list of context documents
|
@@ -264,63 +351,18 @@ class EurLexChat:
|
|
264 |
self.get_chat_history(session_id=session_id).add_message(AIMessage(result.content))
|
265 |
return Answer(answer=result.content, status=-1)
|
266 |
text = eval(result.additional_kwargs['tool_calls'][0]['function']['arguments'])['text']
|
267 |
-
new_docs = self.get_relevant_docs(text)
|
268 |
self._remove_last_messages(session_id=session_id, n=2)
|
269 |
|
270 |
result = self.get_answer(
|
271 |
session_id=session_id,
|
272 |
question=question,
|
273 |
context_docs=new_docs,
|
274 |
-
from_tool=True
|
|
|
275 |
)
|
276 |
if result.status == 1:
|
277 |
return Answer(answer=result.answer, new_documents=new_docs)
|
278 |
else:
|
279 |
-
return Answer(answer=result.answer)
|
280 |
-
return Answer(answer=result.content)
|
281 |
-
|
282 |
-
|
283 |
-
class EurLexChatAkn(EurLexChat):
|
284 |
-
def _parse_documents(self, docs: List[Document]) -> List[dict]:
|
285 |
-
"""
|
286 |
-
Parse a list of documents into a standardized format.
|
287 |
-
|
288 |
-
Args:
|
289 |
-
docs (List[Document]): A list of documents to parse.
|
290 |
-
|
291 |
-
Returns:
|
292 |
-
List[dict]: A list of dictionaries, each containing parsed information from the input documents.
|
293 |
-
"""
|
294 |
-
|
295 |
-
parsed_documents = []
|
296 |
-
|
297 |
-
for doc in docs:
|
298 |
-
parsed_documents.append({
|
299 |
-
'text': doc.page_content,
|
300 |
-
'source': doc.metadata["uri"],
|
301 |
-
'_id': doc.metadata["uri"] + doc.metadata["article_id"]
|
302 |
-
})
|
303 |
-
return parsed_documents
|
304 |
-
|
305 |
-
def get_relevant_docs(self, question: str, eurovoc: str = None) -> List[dict]:
|
306 |
-
"""
|
307 |
-
Retrieve relevant documents based on a given question.
|
308 |
-
|
309 |
-
Args:
|
310 |
-
question (str): The question for which relevant documents are retrieved.
|
311 |
-
eurovoc (str): The Eurovoc to be used as filter
|
312 |
-
|
313 |
-
Returns:
|
314 |
-
List[dict]: A list of relevant documents.
|
315 |
-
"""
|
316 |
-
if eurovoc:
|
317 |
-
retriever = get_vectorDB_module(
|
318 |
-
self.config['vectorDB'], self.embedder, metadata={'filter': {'eurovoc': ''}}
|
319 |
-
)
|
320 |
-
relevant_documents_pipeline_with_filter = (retriever | self._parse_documents)
|
321 |
-
docs = relevant_documents_pipeline_with_filter.invoke(
|
322 |
-
question
|
323 |
-
)
|
324 |
-
else:
|
325 |
-
docs = self.relevant_documents_pipeline.invoke(question)
|
326 |
-
return docs
|
|
|
6 |
from langchain_core.tools import StructuredTool
|
7 |
from langchain_core.utils.function_calling import convert_to_openai_tool
|
8 |
from langchain_core.messages import AIMessage
|
9 |
+
from typing import List, Optional
|
10 |
from chat_utils import get_init_modules, SYSTEM_PROMPT, SYSTEM_PROMPT_LOOP, ContextInput, Answer, get_vectorDB_module
|
11 |
from langchain_core.documents.base import Document
|
12 |
+
from langchain_core.runnables import ConfigurableField
|
13 |
+
import qdrant_client.models as rest
|
14 |
|
15 |
class EurLexChat:
|
16 |
def __init__(self, config: dict):
|
17 |
self.config = config
|
18 |
self.max_history_messages = self.config["max_history_messages"]
|
19 |
+
self.vectorDB_class = self.config['vectorDB']['class']
|
20 |
self.use_functions = (
|
21 |
+
'use_context_function' in config["llm"] and
|
22 |
+
config["llm"]["use_context_function"] and
|
23 |
config["llm"]["class"] == "ChatOpenAI")
|
24 |
|
25 |
+
self.embedder, self.llm, self.chatDB_class, self.retriever, retriever_chain = get_init_modules(
|
26 |
+
config)
|
27 |
+
|
28 |
+
|
29 |
self.max_context_size = config["llm"]["max_context_size"]
|
30 |
|
31 |
self.prompt = ChatPromptTemplate.from_messages([
|
|
|
48 |
name="get_context",
|
49 |
description="To be used whenever the provided context is empty or the user changes the topic of the conversation and you need the context for the topic. " +
|
50 |
"This function must be called only when is strictly necessary. " +
|
51 |
+
"This function must not be called if you already have in the context the information to answer the user. ",
|
52 |
args_schema=ContextInput
|
53 |
)
|
54 |
|
55 |
+
self.llm_with_functions = self.llm.bind(
|
56 |
+
tools=[convert_to_openai_tool(GET_CONTEXT_TOOL)]
|
57 |
+
)
|
58 |
+
|
59 |
+
chain = (
|
60 |
+
self.prompt |
|
61 |
+
RunnableLambda(self._resize_history) |
|
62 |
+
self.llm_with_functions
|
63 |
+
)
|
64 |
else:
|
65 |
+
chain = (
|
66 |
+
self.prompt |
|
67 |
+
RunnableLambda(self._resize_history) |
|
68 |
+
self.llm
|
69 |
+
)
|
70 |
+
|
71 |
self.chain_with_history = RunnableWithMessageHistory(
|
72 |
chain,
|
73 |
self.get_chat_history,
|
|
|
75 |
history_messages_key="history",
|
76 |
)
|
77 |
|
78 |
+
self.relevant_documents_pipeline = (retriever_chain | self._parse_documents)
|
|
|
79 |
|
80 |
def _resize_history(self, input_dict):
|
81 |
"""
|
|
|
90 |
|
91 |
messages = input_dict.messages
|
92 |
if (len(messages) - 2) > self.max_history_messages:
|
93 |
+
messages = [messages[0]] + messages[-(self.max_history_messages + 1):]
|
94 |
input_dict.messages = messages
|
95 |
return input_dict
|
96 |
|
|
|
97 |
def get_chat_history(self, session_id: str):
|
98 |
"""
|
99 |
Retrieve chat history instance for a specific session ID.
|
|
|
120 |
else:
|
121 |
return self.chatDB_class(session_id=session_id, **kwargs)
|
122 |
|
|
|
123 |
def _parse_documents(self, docs: List[Document]) -> List[dict]:
|
124 |
"""
|
125 |
Parse a list of documents into a standardized format.
|
|
|
137 |
parsed_documents.append({
|
138 |
'text': doc.page_content,
|
139 |
'source': doc.metadata["source"],
|
140 |
+
'celex': doc.metadata["celex"],
|
141 |
'_id': doc.metadata["_id"]
|
142 |
})
|
143 |
return parsed_documents
|
144 |
|
|
|
145 |
def _format_context_docs(self, context_docs: List[dict]) -> str:
|
146 |
"""
|
147 |
Format a list of documents into a single string.
|
|
|
158 |
context_str += doc['text'] + "\n\n"
|
159 |
return context_str
|
160 |
|
161 |
+
def get_ids_from_celexes(self, celex_list: List[str]):
|
162 |
+
"""
|
163 |
+
Retrieve the IDs of the documents given their CELEX numbers.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
celex_list (List[str]): A list of CELEX numbers.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
List[str]: A list of document IDs corresponding to the provided CELEX numbers
|
170 |
+
"""
|
171 |
+
|
172 |
+
if self.vectorDB_class == 'Qdrant':
|
173 |
+
scroll_filter = rest.Filter(
|
174 |
+
must=[
|
175 |
+
rest.FieldCondition(
|
176 |
+
key="celex",
|
177 |
+
match=rest.MatchAny(any=celex_list),
|
178 |
+
)
|
179 |
+
])
|
180 |
+
offset = -1
|
181 |
+
ids = []
|
182 |
+
while not (offset is None and offset != -1):
|
183 |
+
if offset == -1:
|
184 |
+
offset = None
|
185 |
+
points, offset = self.retriever.vectorstore.client.scroll(
|
186 |
+
collection_name=self.retriever.vectorstore.collection_name,
|
187 |
+
limit=100,
|
188 |
+
offset=offset,
|
189 |
+
scroll_filter=scroll_filter,
|
190 |
+
with_payload=False
|
191 |
+
)
|
192 |
+
ids.extend([p.id for p in points])
|
193 |
+
else:
|
194 |
+
NotImplementedError(f"Not supported {self.vectorDB_class} vectorDB class")
|
195 |
+
return ids
|
196 |
|
197 |
+
def _get_qdrant_ids_filter(self, ids):
|
198 |
+
"""
|
199 |
+
Returns a Qdrant filter to filter documents based on their IDs.
|
200 |
+
|
201 |
+
This function acts as a workaround due to a hidden bug in Qdrant
|
202 |
+
that prevents correct filtering using CELEX numbers.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
ids (List[str]): A list of document IDs.
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
Qdrant filter: A Qdrant filter to filter documents based on their IDs.
|
209 |
+
"""
|
210 |
+
|
211 |
+
filter = rest.Filter(
|
212 |
+
must=[
|
213 |
+
rest.HasIdCondition(has_id=ids),
|
214 |
+
],
|
215 |
+
)
|
216 |
+
|
217 |
+
return filter
|
218 |
+
|
219 |
+
def get_relevant_docs(self, question: str, ids_list: Optional[List[str]] = None) -> List[dict]:
|
220 |
"""
|
221 |
Retrieve relevant documents based on a given question.
|
222 |
+
If ids_list is provided, the search is filtered by the given IDs.
|
223 |
|
224 |
Args:
|
225 |
question (str): The question for which relevant documents are retrieved.
|
226 |
+
ids_list (Optional[List[str]]): A list of document IDs to filter the search results.
|
227 |
|
228 |
Returns:
|
229 |
List[dict]: A list of relevant documents.
|
230 |
"""
|
231 |
+
if ids_list:
|
232 |
+
search_kwargs = {k:v for k,v in self.retriever.search_kwargs.items()}
|
233 |
+
if self.vectorDB_class == 'Qdrant':
|
234 |
+
filter = self._get_qdrant_ids_filter(ids_list)
|
235 |
+
else:
|
236 |
+
raise ValueError(f'Celex filter not supported for {self.vectorDB_class}')
|
237 |
|
238 |
+
search_kwargs.update({'filter': filter})
|
239 |
+
docs = self.relevant_documents_pipeline.invoke(
|
240 |
+
{'question': question},
|
241 |
+
config={"configurable": {"search_kwargs": search_kwargs}})
|
242 |
+
else:
|
243 |
+
docs = self.relevant_documents_pipeline.invoke({'question': question})
|
244 |
return docs
|
245 |
|
246 |
+
def get_context(self, text: str, ids_list:Optional[List[str]]=None) -> str:
|
|
|
247 |
"""
|
248 |
Retrieve context for a given text.
|
249 |
+
If ids_list is provided, the search is filtered by the given IDs.
|
250 |
|
251 |
Args:
|
252 |
text (str): The text for which context is retrieved.
|
253 |
+
ids_list (Optional[List[str]]): A list of document IDs to filter the search results.
|
254 |
|
255 |
Returns:
|
256 |
str: A formatted string containing the relevant documents texts.
|
257 |
"""
|
258 |
|
259 |
+
docs = self.get_relevant_docs(text, ids_list=ids_list)
|
260 |
return self._format_context_docs(docs)
|
261 |
|
|
|
262 |
def _remove_last_messages(self, session_id:str, n:int) -> None:
|
263 |
"""
|
264 |
Remove last n messages from the chat history of a specific session.
|
|
|
274 |
for message in message_history:
|
275 |
chat_history.add_message(message)
|
276 |
|
|
|
277 |
def _format_history(self, session_id:str) -> str:
|
278 |
"""
|
279 |
Format chat history for a specific session into a string.
|
|
|
291 |
formatted_history += f"{message.type}: {message.content}\n\n"
|
292 |
return formatted_history
|
293 |
|
294 |
+
def _resize_context(self, context_docs: List[dict]) -> List[dict]:
|
|
|
295 |
"""
|
296 |
Resize the dimension of the context in terms of number of tokens.
|
297 |
If the concatenation of document text exceeds max_context_size,
|
|
|
311 |
resized_contexts.append(context_docs[i])
|
312 |
total_len += l
|
313 |
return resized_contexts
|
314 |
+
|
315 |
+
def get_answer(self,
|
316 |
+
session_id: str,
|
317 |
+
question: str,
|
318 |
+
context_docs: List[dict],
|
319 |
+
from_tool: bool = False,
|
320 |
+
ids_list: List[str] = None
|
321 |
+
) -> Answer:
|
322 |
"""
|
323 |
Get an answer to a question of a specific session, considering context documents and history messages.
|
324 |
+
If ids_list is provided, any search for new context documents is filtered by the given IDs.
|
325 |
|
326 |
Args:
|
327 |
session_id (str): The session ID for which the answer is retrieved.
|
328 |
question (str): The new user message.
|
329 |
context_docs (List[dict]): A list of documents used as context to answer the user message.
|
330 |
from_tool (bool, optional): Whether the question originates from a tool. Defaults to False.
|
331 |
+
ids_list (Optional[List[str]]): A list of document IDs to filter the search results for new context documents.
|
332 |
|
333 |
Returns:
|
334 |
Answer: An object containing the answer along with a new list of context documents
|
|
|
351 |
self.get_chat_history(session_id=session_id).add_message(AIMessage(result.content))
|
352 |
return Answer(answer=result.content, status=-1)
|
353 |
text = eval(result.additional_kwargs['tool_calls'][0]['function']['arguments'])['text']
|
354 |
+
new_docs = self.get_relevant_docs(text, ids_list=ids_list)
|
355 |
self._remove_last_messages(session_id=session_id, n=2)
|
356 |
|
357 |
result = self.get_answer(
|
358 |
session_id=session_id,
|
359 |
question=question,
|
360 |
context_docs=new_docs,
|
361 |
+
from_tool=True,
|
362 |
+
ids_list=ids_list
|
363 |
)
|
364 |
if result.status == 1:
|
365 |
return Answer(answer=result.answer, new_documents=new_docs)
|
366 |
else:
|
367 |
+
return Answer(answer=result.answer)
|
368 |
+
return Answer(answer=result.content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -3,6 +3,9 @@ from EurLexChat import EurLexChat
|
|
3 |
import random
|
4 |
import string
|
5 |
from config import CONFIG, UI_USER, UI_PWD
|
|
|
|
|
|
|
6 |
|
7 |
def generate_random_string(length):
|
8 |
# Generate a random string of the specified length
|
@@ -11,31 +14,59 @@ def generate_random_string(length):
|
|
11 |
random_string = ''.join(random.choice(characters) for _ in range(length))
|
12 |
return random_string
|
13 |
|
14 |
-
class
|
15 |
def __init__(self) -> None:
|
16 |
self.documents = []
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
chat = EurLexChat(config=CONFIG)
|
20 |
-
docs = Documents()
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def remove_doc(btn):
|
24 |
-
|
25 |
-
new_accordions, new_texts = set_new_docs_ui(
|
26 |
return [*new_accordions, *new_texts]
|
27 |
|
28 |
|
29 |
-
def get_answer(message, history, session_id):
|
30 |
s = session_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if len(history) == 0:
|
32 |
-
|
|
|
33 |
s = generate_random_string(7)
|
34 |
-
result = chat.get_answer(s, message,
|
35 |
history.append((message, result.answer))
|
36 |
if result.new_documents:
|
37 |
-
|
38 |
-
accordions, list_texts = set_new_docs_ui(
|
39 |
return ['', history, gr.Column(scale=1, visible=True), *accordions, *list_texts, s]
|
40 |
|
41 |
|
@@ -44,7 +75,7 @@ def set_new_docs_ui(documents):
|
|
44 |
new_texts = []
|
45 |
for i in range(len(accordions)):
|
46 |
if i < len(documents):
|
47 |
-
new_accordions.append(gr.update(accordions[i].elem_id, label=f"{documents[i]['text'][:
|
48 |
new_texts.append(gr.update(list_texts[i].elem_id, value=f"{documents[i]['text']}...", visible=True))
|
49 |
else:
|
50 |
new_accordions.append(gr.update(accordions[i].elem_id, label="", visible=False))
|
@@ -53,15 +84,20 @@ def set_new_docs_ui(documents):
|
|
53 |
|
54 |
|
55 |
def clean_page():
|
56 |
-
|
57 |
-
accordions, list_texts = set_new_docs_ui(
|
58 |
-
return ["", [], None, *accordions, *list_texts]
|
59 |
|
60 |
list_texts = []
|
61 |
accordions = []
|
62 |
states = []
|
63 |
delete_buttons = []
|
64 |
|
|
|
|
|
|
|
|
|
|
|
65 |
block = gr.Blocks()
|
66 |
with block:
|
67 |
|
@@ -71,15 +107,16 @@ with block:
|
|
71 |
state = gr.State(value=None)
|
72 |
with gr.Row():
|
73 |
with gr.Column(scale=3):
|
|
|
74 |
chatbot = gr.Chatbot()
|
75 |
with gr.Row():
|
76 |
-
message = gr.Textbox(scale=10)
|
77 |
-
submit = gr.Button("Send", scale=1)
|
78 |
-
clear = gr.Button("
|
79 |
|
80 |
with gr.Column(scale=1, visible=False) as col:
|
81 |
gr.Markdown("""<h3><center>Context documents</center></h3>""")
|
82 |
-
for i in range(
|
83 |
with gr.Accordion(label="", elem_id=f'accordion_{i}', open=False) as acc:
|
84 |
list_texts.append(gr.Textbox("", elem_id=f'text_{i}', show_label=False, lines=10))
|
85 |
btn = gr.Button(f"Remove document")
|
@@ -101,9 +138,10 @@ with block:
|
|
101 |
Contact us: <a href="mailto:chat-eur-lex@igsg.cnr.it">chat-eur-lex@igsg.cnr.it</a>.</p>
|
102 |
</div>""")
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
submit
|
|
|
107 |
for i, b in enumerate(delete_buttons):
|
108 |
b.click(remove_doc, inputs=states[i], outputs=[*accordions, *list_texts])
|
109 |
|
|
|
3 |
import random
|
4 |
import string
|
5 |
from config import CONFIG, UI_USER, UI_PWD
|
6 |
+
from consts import JUSTICE_CELEXES, POLLUTION_CELEXES
|
7 |
+
from enum import Enum
|
8 |
+
import regex as re
|
9 |
|
10 |
def generate_random_string(length):
|
11 |
# Generate a random string of the specified length
|
|
|
14 |
random_string = ''.join(random.choice(characters) for _ in range(length))
|
15 |
return random_string
|
16 |
|
17 |
+
class ChatBot():
|
18 |
def __init__(self) -> None:
|
19 |
self.documents = []
|
20 |
+
self.chat = EurLexChat(config=CONFIG)
|
21 |
|
22 |
+
class Versions(Enum):
|
23 |
+
AKN='Akoma Ntoso'
|
24 |
+
JUSTICE='Organisation of the legal system (1226) eurovoc'
|
25 |
+
POLLUTION='Pollution (2524) eurovoc'
|
26 |
+
BASIC='All eurovoc'
|
27 |
|
|
|
|
|
28 |
|
29 |
+
bot = ChatBot()
|
30 |
+
|
31 |
+
justice_ids = bot.chat.get_ids_from_celexes(JUSTICE_CELEXES)
|
32 |
+
pollution_ids = bot.chat.get_ids_from_celexes(POLLUTION_CELEXES)
|
33 |
+
|
34 |
+
|
35 |
+
def reinit(version):
|
36 |
+
bot.documents = []
|
37 |
+
if version == Versions.AKN.value:
|
38 |
+
CONFIG['vectorDB']['kwargs']['collection_name'] += "-akn"
|
39 |
+
else:
|
40 |
+
CONFIG['vectorDB']['kwargs']['collection_name'] = re.sub(r'-akn$', '', CONFIG['vectorDB']['kwargs']['collection_name'])
|
41 |
+
bot.chat = EurLexChat(config=CONFIG)
|
42 |
+
return clean_page()
|
43 |
|
44 |
def remove_doc(btn):
|
45 |
+
bot.documents.pop(btn)
|
46 |
+
new_accordions, new_texts = set_new_docs_ui(bot.documents)
|
47 |
return [*new_accordions, *new_texts]
|
48 |
|
49 |
|
50 |
+
def get_answer(message, history, session_id, celex_type):
|
51 |
s = session_id
|
52 |
+
if celex_type == Versions.JUSTICE.value:
|
53 |
+
ids_list = justice_ids
|
54 |
+
elif celex_type == Versions.POLLUTION.value:
|
55 |
+
ids_list = pollution_ids
|
56 |
+
elif celex_type == Versions.BASIC.value or celex_type == Versions.AKN.value:
|
57 |
+
ids_list = None
|
58 |
+
else:
|
59 |
+
raise ValueError(f'Wrong celex_type: {celex_type}')
|
60 |
+
|
61 |
if len(history) == 0:
|
62 |
+
bot.documents = []
|
63 |
+
#docs.documents = chat.get_relevant_docs(question=message, ids_list=ids_list)
|
64 |
s = generate_random_string(7)
|
65 |
+
result = bot.chat.get_answer(s, message, bot.documents, ids_list=ids_list)
|
66 |
history.append((message, result.answer))
|
67 |
if result.new_documents:
|
68 |
+
bot.documents = result.new_documents
|
69 |
+
accordions, list_texts = set_new_docs_ui(bot.documents)
|
70 |
return ['', history, gr.Column(scale=1, visible=True), *accordions, *list_texts, s]
|
71 |
|
72 |
|
|
|
75 |
new_texts = []
|
76 |
for i in range(len(accordions)):
|
77 |
if i < len(documents):
|
78 |
+
new_accordions.append(gr.update(accordions[i].elem_id, label=f"{documents[i]['celex']}: {documents[i]['text'][:40]}...", visible=True, open=False))
|
79 |
new_texts.append(gr.update(list_texts[i].elem_id, value=f"{documents[i]['text']}...", visible=True))
|
80 |
else:
|
81 |
new_accordions.append(gr.update(accordions[i].elem_id, label="", visible=False))
|
|
|
84 |
|
85 |
|
86 |
def clean_page():
|
87 |
+
bot.documents = []
|
88 |
+
accordions, list_texts = set_new_docs_ui(bot.documents)
|
89 |
+
return ["", [], None, *accordions, *list_texts, gr.Column(visible=False)]
|
90 |
|
91 |
list_texts = []
|
92 |
accordions = []
|
93 |
states = []
|
94 |
delete_buttons = []
|
95 |
|
96 |
+
if CONFIG['vectorDB'].get('rerank'):
|
97 |
+
n_context_docs = CONFIG['vectorDB']['rerank']['kwargs']['top_n']
|
98 |
+
else:
|
99 |
+
n_context_docs = CONFIG['vectorDB']['retriever_args']['search_kwargs']['k']
|
100 |
+
|
101 |
block = gr.Blocks()
|
102 |
with block:
|
103 |
|
|
|
107 |
state = gr.State(value=None)
|
108 |
with gr.Row():
|
109 |
with gr.Column(scale=3):
|
110 |
+
drop_down = gr.Dropdown(label='Choose a version', choices=[attribute.value for attribute in Versions], value=Versions.BASIC)
|
111 |
chatbot = gr.Chatbot()
|
112 |
with gr.Row():
|
113 |
+
message = gr.Textbox(scale=10,label='',placeholder='Write a message...', container=False)
|
114 |
+
submit = gr.Button("Send message", scale=1)
|
115 |
+
clear = gr.Button("Reset chat", scale=1)
|
116 |
|
117 |
with gr.Column(scale=1, visible=False) as col:
|
118 |
gr.Markdown("""<h3><center>Context documents</center></h3>""")
|
119 |
+
for i in range(n_context_docs):
|
120 |
with gr.Accordion(label="", elem_id=f'accordion_{i}', open=False) as acc:
|
121 |
list_texts.append(gr.Textbox("", elem_id=f'text_{i}', show_label=False, lines=10))
|
122 |
btn = gr.Button(f"Remove document")
|
|
|
138 |
Contact us: <a href="mailto:chat-eur-lex@igsg.cnr.it">chat-eur-lex@igsg.cnr.it</a>.</p>
|
139 |
</div>""")
|
140 |
|
141 |
+
drop_down.change(reinit, inputs=[drop_down], outputs=[message, chatbot, state, *accordions, *list_texts, col])
|
142 |
+
clear.click(clean_page, outputs=[message, chatbot, state, *accordions, *list_texts, col])
|
143 |
+
message.submit(get_answer, inputs=[message, chatbot, state, drop_down], outputs=[message, chatbot, col, *accordions, *list_texts, state])
|
144 |
+
submit.click(get_answer, inputs=[message, chatbot, state, drop_down], outputs=[message, chatbot, col, *accordions, *list_texts, state])
|
145 |
for i, b in enumerate(delete_buttons):
|
146 |
b.click(remove_doc, inputs=states[i], outputs=[*accordions, *list_texts])
|
147 |
|
chat_utils.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from typing import Optional, List
|
3 |
from langchain.pydantic_v1 import BaseModel, Field
|
|
|
|
|
|
|
4 |
|
5 |
SYSTEM_PROMPT = (
|
6 |
"You are an assistant specialized in the legal and compliance field who must answer and converse with the user using the context provided. " +
|
@@ -59,12 +62,11 @@ def get_init_modules(config):
|
|
59 |
mod_chat = __import__("langchain_community.chat_message_histories",
|
60 |
fromlist=[config["chatDB"]["class"]])
|
61 |
chatDB_class = getattr(mod_chat, config["chatDB"]["class"])
|
62 |
-
retriever = get_vectorDB_module(config['vectorDB'], embedder)
|
63 |
|
64 |
-
return embedder, llm, chatDB_class, retriever
|
65 |
|
66 |
-
|
67 |
-
def get_vectorDB_module(db_config, embedder, metadata=None):
|
68 |
mod_chat = __import__("langchain_community.vectorstores",
|
69 |
fromlist=[db_config["class"]])
|
70 |
vectorDB_class = getattr(mod_chat, db_config["class"])
|
@@ -85,13 +87,10 @@ def get_vectorDB_module(db_config, embedder, metadata=None):
|
|
85 |
|
86 |
client = QdrantClient(**client_kwargs)
|
87 |
|
88 |
-
if metadata is None:
|
89 |
-
metadata = {}
|
90 |
retriever = vectorDB_class(
|
91 |
client, embeddings=embedder, **db_kwargs).as_retriever(
|
92 |
search_type=db_config["retriever_args"]["search_type"],
|
93 |
-
search_kwargs={**db_config["retriever_args"]["search_kwargs"]
|
94 |
-
filter=metadata
|
95 |
)
|
96 |
|
97 |
else:
|
@@ -100,4 +99,29 @@ def get_vectorDB_module(db_config, embedder, metadata=None):
|
|
100 |
search_kwargs=db_config["retriever_args"]["search_kwargs"]
|
101 |
)
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from typing import Optional, List
|
3 |
from langchain.pydantic_v1 import BaseModel, Field
|
4 |
+
from langchain_core.runnables import ConfigurableField
|
5 |
+
from langchain_core.runnables.base import RunnableLambda
|
6 |
+
from operator import itemgetter
|
7 |
|
8 |
SYSTEM_PROMPT = (
|
9 |
"You are an assistant specialized in the legal and compliance field who must answer and converse with the user using the context provided. " +
|
|
|
62 |
mod_chat = __import__("langchain_community.chat_message_histories",
|
63 |
fromlist=[config["chatDB"]["class"]])
|
64 |
chatDB_class = getattr(mod_chat, config["chatDB"]["class"])
|
65 |
+
retriever, retriever_chain = get_vectorDB_module(config['vectorDB'], embedder)
|
66 |
|
67 |
+
return embedder, llm, chatDB_class, retriever, retriever_chain
|
68 |
|
69 |
+
def get_vectorDB_module(db_config, embedder):
|
|
|
70 |
mod_chat = __import__("langchain_community.vectorstores",
|
71 |
fromlist=[db_config["class"]])
|
72 |
vectorDB_class = getattr(mod_chat, db_config["class"])
|
|
|
87 |
|
88 |
client = QdrantClient(**client_kwargs)
|
89 |
|
|
|
|
|
90 |
retriever = vectorDB_class(
|
91 |
client, embeddings=embedder, **db_kwargs).as_retriever(
|
92 |
search_type=db_config["retriever_args"]["search_type"],
|
93 |
+
search_kwargs={**db_config["retriever_args"]["search_kwargs"]}
|
|
|
94 |
)
|
95 |
|
96 |
else:
|
|
|
99 |
search_kwargs=db_config["retriever_args"]["search_kwargs"]
|
100 |
)
|
101 |
|
102 |
+
retriever = retriever.configurable_fields(
|
103 |
+
search_kwargs=ConfigurableField(
|
104 |
+
id="search_kwargs",
|
105 |
+
name="Search Kwargs",
|
106 |
+
description="The search kwargs to use. Includes dynamic category adjustment.",
|
107 |
+
)
|
108 |
+
)
|
109 |
+
|
110 |
+
chain = ( RunnableLambda(lambda x: x['question']) | retriever)
|
111 |
+
|
112 |
+
if db_config.get("rerank"):
|
113 |
+
if db_config["rerank"]["class"] == "CohereRerank":
|
114 |
+
module_compressors = __import__("langchain.retrievers.document_compressors",
|
115 |
+
fromlist=[db_config["rerank"]["class"]])
|
116 |
+
rerank_class = getattr(module_compressors, db_config["rerank"]["class"])
|
117 |
+
rerank = rerank_class(**db_config["rerank"]["kwargs"])
|
118 |
+
|
119 |
+
chain = ({
|
120 |
+
"docs": chain,
|
121 |
+
"query": itemgetter("question"),
|
122 |
+
} | (RunnableLambda(lambda x: rerank.compress_documents(x['docs'], x['query'])))
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
raise NotImplementedError(db_config["rerank"]["class"])
|
126 |
+
return retriever, chain
|
127 |
+
|
config.py
CHANGED
@@ -24,12 +24,22 @@ CONFIG["llm"]["kwargs"]["openai_organization"] = OPENAI_ORG_KEY
|
|
24 |
CONFIG["vectorDB"]["kwargs"]["url"] = QDRANT_URL
|
25 |
CONFIG["vectorDB"]["kwargs"]["api_key"] = QDRANT_KEY
|
26 |
|
|
|
27 |
# if the history should be stored on AWS DynamoDB
|
28 |
# otherwise it will be stored on local FS to the output_path defined in the config.yaml file
|
29 |
if CONFIG['chatDB']['class'] == 'DynamoDBChatMessageHistory':
|
30 |
-
CHATDB_TABLE_NAME = os.getenv("CHATDB_TABLE_NAME",
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
CONFIG["chatDB"]["kwargs"]["table_name"] = CHATDB_TABLE_NAME
|
34 |
CONFIG["chatDB"]["kwargs"]["aws_access_key_id"] = AWS_ACCESS_KEY_ID
|
35 |
CONFIG["chatDB"]["kwargs"]["aws_secret_access_key"] = AWS_SECRET_ACCESS_KEY
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
CONFIG["vectorDB"]["kwargs"]["url"] = QDRANT_URL
|
25 |
CONFIG["vectorDB"]["kwargs"]["api_key"] = QDRANT_KEY
|
26 |
|
27 |
+
|
28 |
# if the history should be stored on AWS DynamoDB
|
29 |
# otherwise it will be stored on local FS to the output_path defined in the config.yaml file
|
30 |
if CONFIG['chatDB']['class'] == 'DynamoDBChatMessageHistory':
|
31 |
+
CHATDB_TABLE_NAME = os.getenv("CHATDB_TABLE_NAME",
|
32 |
+
CONFIG["chatDB"]["kwargs"].get("table_name", "ChatEurlexHistory"))
|
33 |
+
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID",
|
34 |
+
CONFIG["chatDB"]["kwargs"].get("aws_access_key_id", ""))
|
35 |
+
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY",
|
36 |
+
CONFIG["chatDB"]["kwargs"].get("aws_secret_access_key", ""))
|
37 |
CONFIG["chatDB"]["kwargs"]["table_name"] = CHATDB_TABLE_NAME
|
38 |
CONFIG["chatDB"]["kwargs"]["aws_access_key_id"] = AWS_ACCESS_KEY_ID
|
39 |
CONFIG["chatDB"]["kwargs"]["aws_secret_access_key"] = AWS_SECRET_ACCESS_KEY
|
40 |
+
|
41 |
+
# if the Cohere reranking is enabled look for the api key and assign it to the CONFIG
|
42 |
+
if CONFIG['vectorDB'].get('rerank'):
|
43 |
+
COHERE_KEY = os.getenv("COHERE_API_KEY",
|
44 |
+
CONFIG["vectorDB"]["rerank"]["kwargs"].get("cohere_api_key", ""))
|
45 |
+
CONFIG["vectorDB"]["rerank"]["kwargs"]["cohere_api_key"] = COHERE_KEY
|
config.yaml
CHANGED
@@ -4,15 +4,22 @@ vectorDB:
|
|
4 |
url: ""
|
5 |
api_key: ""
|
6 |
collection_name: chat-eur-lex
|
|
|
7 |
|
8 |
retriever_args:
|
9 |
search_type: mmr
|
10 |
search_kwargs:
|
11 |
-
k:
|
12 |
fetch_k: 300
|
13 |
-
score_threshold: 0.0
|
14 |
lambda_mult: 0.8
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
embeddings:
|
17 |
class: OpenAIEmbeddings
|
18 |
kwargs:
|
@@ -22,9 +29,9 @@ embeddings:
|
|
22 |
llm:
|
23 |
class: ChatOpenAI
|
24 |
use_context_function: True
|
25 |
-
max_context_size:
|
26 |
kwargs:
|
27 |
-
model_name: gpt-
|
28 |
temperature: 0.8
|
29 |
|
30 |
|
@@ -35,4 +42,4 @@ chatDB:
|
|
35 |
aws_access_key_id: ''
|
36 |
aws_secret_access_key: ''
|
37 |
|
38 |
-
max_history_messages:
|
|
|
4 |
url: ""
|
5 |
api_key: ""
|
6 |
collection_name: chat-eur-lex
|
7 |
+
timeout: 60
|
8 |
|
9 |
retriever_args:
|
10 |
search_type: mmr
|
11 |
search_kwargs:
|
12 |
+
k: 100
|
13 |
fetch_k: 300
|
|
|
14 |
lambda_mult: 0.8
|
15 |
|
16 |
+
rerank:
|
17 |
+
class: CohereRerank
|
18 |
+
kwargs:
|
19 |
+
cohere_api_key: ""
|
20 |
+
model: rerank-multilingual-v3.0
|
21 |
+
top_n: 15
|
22 |
+
|
23 |
embeddings:
|
24 |
class: OpenAIEmbeddings
|
25 |
kwargs:
|
|
|
29 |
llm:
|
30 |
class: ChatOpenAI
|
31 |
use_context_function: True
|
32 |
+
max_context_size: 12000
|
33 |
kwargs:
|
34 |
+
model_name: gpt-4o
|
35 |
temperature: 0.8
|
36 |
|
37 |
|
|
|
42 |
aws_access_key_id: ''
|
43 |
aws_secret_access_key: ''
|
44 |
|
45 |
+
max_history_messages: 10
|
consts.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
JUSTICE_CELEXES =[
|
2 |
+
"32024D0414",
|
3 |
+
"32023D2098",
|
4 |
+
"32023D0133",
|
5 |
+
"32022D0998",
|
6 |
+
"32022D0494",
|
7 |
+
"32021D1711",
|
8 |
+
"32021D1943",
|
9 |
+
"32021R0693",
|
10 |
+
"32020D1117",
|
11 |
+
"32019D1798",
|
12 |
+
"32019D1564",
|
13 |
+
"32019R1111",
|
14 |
+
"32019D0844",
|
15 |
+
"32019R0629",
|
16 |
+
"32019D0598",
|
17 |
+
"32018R1990",
|
18 |
+
"32018R1935",
|
19 |
+
"32018D1275",
|
20 |
+
"32018D1103",
|
21 |
+
"32018D1094",
|
22 |
+
"02018D1696-20200711",
|
23 |
+
"32018D0856",
|
24 |
+
"02017R1939-20210110",
|
25 |
+
"32017D0973",
|
26 |
+
"32016D1990",
|
27 |
+
"32016R1192",
|
28 |
+
"32016R1104",
|
29 |
+
"32016R1103",
|
30 |
+
"32016D0947",
|
31 |
+
"32016D0954",
|
32 |
+
"32016D0454",
|
33 |
+
"32015R2422",
|
34 |
+
"32015D1380",
|
35 |
+
"32014R1329",
|
36 |
+
"32014D0887",
|
37 |
+
"32014D0444",
|
38 |
+
"32013L0048",
|
39 |
+
"02012R1215-20150110",
|
40 |
+
"32012R0650",
|
41 |
+
"32011R0969",
|
42 |
+
"32009D0026",
|
43 |
+
"02009R0004-20150312",
|
44 |
+
"32008R0593",
|
45 |
+
"32007D0712",
|
46 |
+
"32005F0667",
|
47 |
+
"32005D0150",
|
48 |
+
"32004D0407",
|
49 |
+
"32002D0971"
|
50 |
+
]
|
51 |
+
|
52 |
+
POLLUTION_CELEXES = [
|
53 |
+
"32022D0591",
|
54 |
+
"02018R0842-20230516",
|
55 |
+
"32006D0871",
|
56 |
+
"22006A1208(04)",
|
57 |
+
"32021R1119",
|
58 |
+
"32021R0783",
|
59 |
+
"32020R0852",
|
60 |
+
"02019R0856-20210811",
|
61 |
+
"02017R1369-20210501",
|
62 |
+
"32016D1841",
|
63 |
+
"22016A1019(01)",
|
64 |
+
"32015L2193",
|
65 |
+
"02015R0757-20161216",
|
66 |
+
"32023R1115",
|
67 |
+
"32023R0955",
|
68 |
+
"32022D0591",
|
69 |
+
"02018R2067-20210101",
|
70 |
+
"02018R2067-20210101",
|
71 |
+
"32021R1119",
|
72 |
+
"32020R1294"
|
73 |
+
]
|
requirements.txt
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
-
langchain==0.1.
|
2 |
lxml==4.9.2
|
3 |
-
tiktoken==0.
|
4 |
qdrant-client==1.7.3
|
5 |
transformers==4.37.2
|
6 |
openai==1.12.0
|
7 |
gradio==4.18.0
|
8 |
-
boto3==1.34
|
|
|
|
1 |
+
langchain==0.1.14
|
2 |
lxml==4.9.2
|
3 |
+
tiktoken==0.7.0
|
4 |
qdrant-client==1.7.3
|
5 |
transformers==4.37.2
|
6 |
openai==1.12.0
|
7 |
gradio==4.18.0
|
8 |
+
boto3==1.34
|
9 |
+
cohere==5.5.8
|