from dataclasses import dataclass from typing import Optional, List from langchain.pydantic_v1 import BaseModel, Field from langchain_core.runnables import ConfigurableField from langchain_core.runnables.base import RunnableLambda from operator import itemgetter SYSTEM_PROMPT = ( "You are an assistant specialized in the legal and compliance field who must answer and converse with the user using the context provided. " + "When you answer the user, if it is relevant, cite the laws and articles you are referring to. NEVER mention the use of context in your answers. " "If you believe the question cannot be answered from the given context, do not make up an answer. Answer in the same language the user is speaking.\n\n ### Context:\n {context}" ) SYSTEM_PROMPT_LOOP = ( "You are an assistant who must inform the user that you do not have enough information to answer and ask if the user can provide you with additional information. " + "This answer, must be adapted to the conversation that occurred with the user that is provided to you. Just write down the answer " ) @dataclass class Answer(): answer: str new_documents: Optional[List] = None status: Optional[int] = 1 class ContextInput(BaseModel): text: str = Field( title="Text", description="Self-explanatory summary describing what the user is asking for" ) def get_instance_dynamic_class(lib_path:str, class_name:str, **kwargs): """ Instantiate a dynamically imported class from a given library path and class name. Args: lib_path (str): The path to the library/module containing the class. class_name (str): The name of the class to instantiate. **kwargs: Additional keyword arguments to pass to the class constructor. Returns: An instance of the dynamically imported class initialized with the provided arguments. """ mod = __import__(lib_path, fromlist=[class_name]) dynamic_class = getattr(mod, class_name) return dynamic_class(**kwargs) def get_init_modules(config): embedder = get_instance_dynamic_class( lib_path='langchain_community.embeddings', class_name=config["embeddings"]["class"], **config["embeddings"]["kwargs"] ) llm = get_instance_dynamic_class( lib_path='langchain_community.chat_models', class_name=config["llm"]["class"], **config["llm"]["kwargs"] ) mod_chat = __import__("langchain_community.chat_message_histories", fromlist=[config["chatDB"]["class"]]) chatDB_class = getattr(mod_chat, config["chatDB"]["class"]) retriever, retriever_chain = get_vectorDB_module(config['vectorDB'], embedder) return embedder, llm, chatDB_class, retriever, retriever_chain def get_vectorDB_module(db_config, embedder): mod_chat = __import__("langchain_community.vectorstores", fromlist=[db_config["class"]]) vectorDB_class = getattr(mod_chat, db_config["class"]) if db_config["class"] == 'Qdrant': from qdrant_client import QdrantClient import inspect # Get QdrantClient init parameters name from signature signature_params = inspect.signature(QdrantClient.__init__).parameters.values() params_to_exclude = ['self', 'kwargs'] client_args = [el.name for el in list(signature_params) if el.name not in params_to_exclude] client_kwargs = {k: v for k, v in db_config['kwargs'].items() if k in client_args} db_kwargs = { k: v for k, v in db_config['kwargs'].items() if k not in client_kwargs} client = QdrantClient(**client_kwargs) retriever = vectorDB_class( client, embeddings=embedder, **db_kwargs).as_retriever( search_type=db_config["retriever_args"]["search_type"], search_kwargs={**db_config["retriever_args"]["search_kwargs"]} ) else: retriever = vectorDB_class(embeddings=embedder, **db_config["kwargs"]).as_retriever( search_type=db_config["retriever_args"]["search_type"], search_kwargs=db_config["retriever_args"]["search_kwargs"] ) retriever = retriever.configurable_fields( search_kwargs=ConfigurableField( id="search_kwargs", name="Search Kwargs", description="The search kwargs to use. Includes dynamic category adjustment.", ) ) chain = ( RunnableLambda(lambda x: x['question']) | retriever) if db_config.get("rerank"): if db_config["rerank"]["class"] == "CohereRerank": module_compressors = __import__("langchain.retrievers.document_compressors", fromlist=[db_config["rerank"]["class"]]) rerank_class = getattr(module_compressors, db_config["rerank"]["class"]) rerank = rerank_class(**db_config["rerank"]["kwargs"]) chain = ({ "docs": chain, "query": itemgetter("question"), } | (RunnableLambda(lambda x: rerank.compress_documents(x['docs'], x['query']))) ) else: raise NotImplementedError(db_config["rerank"]["class"]) return retriever, chain