Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from lida import Manager, TextGenerationConfig, llm
|
3 |
+
from lida.datamodel import Goal
|
4 |
+
import os
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
# make data dir if it doesn't exist
|
9 |
+
os.makedirs("data", exist_ok=True)
|
10 |
+
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="LIDA: Automatic Generation of Visualizations and Infographics",
|
13 |
+
page_icon="📊",
|
14 |
+
)
|
15 |
+
|
16 |
+
st.write("# LIDA: Automatic Generation of Visualizations and Infographics using Large Language Models 📊")
|
17 |
+
|
18 |
+
st.sidebar.write("## Setup")
|
19 |
+
|
20 |
+
# Step 1 - Get OpenAI API key
|
21 |
+
openai_key = os.getenv("OPENAI_API_KEY")
|
22 |
+
|
23 |
+
if not openai_key:
|
24 |
+
openai_key = st.sidebar.text_input("Enter OpenAI API key:")
|
25 |
+
if openai_key:
|
26 |
+
display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:]
|
27 |
+
st.sidebar.write(f"Current key: {display_key}")
|
28 |
+
else:
|
29 |
+
st.sidebar.write("Please enter OpenAI API key.")
|
30 |
+
else:
|
31 |
+
display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:]
|
32 |
+
st.sidebar.write(f"OpenAI API key loaded from environment variable: {display_key}")
|
33 |
+
|
34 |
+
st.markdown(
|
35 |
+
"""
|
36 |
+
LIDA is a library for generating data visualizations and data-faithful infographics.
|
37 |
+
LIDA is grammar agnostic (will work with any programming language and visualization
|
38 |
+
libraries e.g. matplotlib, seaborn, altair, d3 etc) and works with multiple large language
|
39 |
+
model providers (OpenAI, Azure OpenAI, PaLM, Cohere, Huggingface). Details on the components
|
40 |
+
of LIDA are described in the [paper here](https://arxiv.org/abs/2303.02927) and in this
|
41 |
+
tutorial [notebook](notebooks/tutorial.ipynb). See the project page [here](https://microsoft.github.io/lida/) for updates!.
|
42 |
+
|
43 |
+
This demo shows how to use the LIDA python api with Streamlit. [More](/about).
|
44 |
+
|
45 |
+
----
|
46 |
+
""")
|
47 |
+
|
48 |
+
# Step 2 - Select a dataset and summarization method
|
49 |
+
if openai_key:
|
50 |
+
# Initialize selected_dataset to None
|
51 |
+
selected_dataset = None
|
52 |
+
|
53 |
+
# select model from gpt-4 , gpt-3.5-turbo, gpt-3.5-turbo-16k
|
54 |
+
st.sidebar.write("## Text Generation Model")
|
55 |
+
models = ["gpt-4", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"]
|
56 |
+
selected_model = st.sidebar.selectbox(
|
57 |
+
'Choose a model',
|
58 |
+
options=models,
|
59 |
+
index=0
|
60 |
+
)
|
61 |
+
|
62 |
+
# select temperature on a scale of 0.0 to 1.0
|
63 |
+
# st.sidebar.write("## Text Generation Temperature")
|
64 |
+
temperature = st.sidebar.slider(
|
65 |
+
"Temperature",
|
66 |
+
min_value=0.0,
|
67 |
+
max_value=1.0,
|
68 |
+
value=0.0)
|
69 |
+
|
70 |
+
# set use_cache in sidebar
|
71 |
+
use_cache = st.sidebar.checkbox("Use cache", value=True)
|
72 |
+
|
73 |
+
# Handle dataset selection and upload
|
74 |
+
st.sidebar.write("## Data Summarization")
|
75 |
+
st.sidebar.write("### Choose a dataset")
|
76 |
+
|
77 |
+
datasets = [
|
78 |
+
{"label": "Select a dataset", "url": None},
|
79 |
+
{"label": "Cars", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/cars.csv"},
|
80 |
+
{"label": "Weather", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/weather.json"},
|
81 |
+
]
|
82 |
+
|
83 |
+
selected_dataset_label = st.sidebar.selectbox(
|
84 |
+
'Choose a dataset',
|
85 |
+
options=[dataset["label"] for dataset in datasets],
|
86 |
+
index=0
|
87 |
+
)
|
88 |
+
|
89 |
+
upload_own_data = st.sidebar.checkbox("Upload your own data")
|
90 |
+
|
91 |
+
if upload_own_data:
|
92 |
+
uploaded_file = st.sidebar.file_uploader("Choose a CSV or JSON file", type=["csv", "json"])
|
93 |
+
|
94 |
+
if uploaded_file is not None:
|
95 |
+
# Get the original file name and extension
|
96 |
+
file_name, file_extension = os.path.splitext(uploaded_file.name)
|
97 |
+
|
98 |
+
# Load the data depending on the file type
|
99 |
+
if file_extension.lower() == ".csv":
|
100 |
+
data = pd.read_csv(uploaded_file)
|
101 |
+
elif file_extension.lower() == ".json":
|
102 |
+
data = pd.read_json(uploaded_file)
|
103 |
+
|
104 |
+
# Save the data using the original file name in the data dir
|
105 |
+
uploaded_file_path = os.path.join("data", uploaded_file.name)
|
106 |
+
data.to_csv(uploaded_file_path, index=False)
|
107 |
+
|
108 |
+
selected_dataset = uploaded_file_path
|
109 |
+
|
110 |
+
datasets.append({"label": file_name, "url": uploaded_file_path})
|
111 |
+
|
112 |
+
# st.sidebar.write("Uploaded file path: ", uploaded_file_path)
|
113 |
+
else:
|
114 |
+
selected_dataset = datasets[[dataset["label"]
|
115 |
+
for dataset in datasets].index(selected_dataset_label)]["url"]
|
116 |
+
|
117 |
+
if not selected_dataset:
|
118 |
+
st.info("To continue, select a dataset from the sidebar on the left or upload your own.")
|
119 |
+
|
120 |
+
st.sidebar.write("### Choose a summarization method")
|
121 |
+
# summarization_methods = ["default", "llm", "columns"]
|
122 |
+
summarization_methods = [
|
123 |
+
{"label": "llm",
|
124 |
+
"description":
|
125 |
+
"Uses the LLM to generate annotate the default summary, adding details such as semantic types for columns and dataset description"},
|
126 |
+
{"label": "default",
|
127 |
+
"description": "Uses dataset column statistics and column names as the summary"},
|
128 |
+
|
129 |
+
{"label": "columns", "description": "Uses the dataset column names as the summary"}]
|
130 |
+
|
131 |
+
# selected_method = st.sidebar.selectbox("Choose a method", options=summarization_methods)
|
132 |
+
selected_method_label = st.sidebar.selectbox(
|
133 |
+
'Choose a method',
|
134 |
+
options=[method["label"] for method in summarization_methods],
|
135 |
+
index=0
|
136 |
+
)
|
137 |
+
|
138 |
+
selected_method = summarization_methods[[
|
139 |
+
method["label"] for method in summarization_methods].index(selected_method_label)]["label"]
|
140 |
+
|
141 |
+
# add description of selected method in very small font to sidebar
|
142 |
+
selected_summary_method_description = summarization_methods[[
|
143 |
+
method["label"] for method in summarization_methods].index(selected_method_label)]["description"]
|
144 |
+
|
145 |
+
if selected_method:
|
146 |
+
st.sidebar.markdown(
|
147 |
+
f"<span> {selected_summary_method_description} </span>",
|
148 |
+
unsafe_allow_html=True)
|
149 |
+
|
150 |
+
# Step 3 - Generate data summary
|
151 |
+
if openai_key and selected_dataset and selected_method:
|
152 |
+
lida = Manager(text_gen=llm("openai", api_key=openai_key))
|
153 |
+
textgen_config = TextGenerationConfig(
|
154 |
+
n=1,
|
155 |
+
temperature=temperature,
|
156 |
+
model=selected_model,
|
157 |
+
use_cache=use_cache)
|
158 |
+
|
159 |
+
st.write("## Summary")
|
160 |
+
# **** lida.summarize *****
|
161 |
+
summary = lida.summarize(
|
162 |
+
selected_dataset,
|
163 |
+
summary_method=selected_method,
|
164 |
+
textgen_config=textgen_config)
|
165 |
+
|
166 |
+
if "dataset_description" in summary:
|
167 |
+
st.write(summary["dataset_description"])
|
168 |
+
|
169 |
+
if "fields" in summary:
|
170 |
+
fields = summary["fields"]
|
171 |
+
nfields = []
|
172 |
+
for field in fields:
|
173 |
+
flatted_fields = {}
|
174 |
+
flatted_fields["column"] = field["column"]
|
175 |
+
# flatted_fields["dtype"] = field["dtype"]
|
176 |
+
for row in field["properties"].keys():
|
177 |
+
if row != "samples":
|
178 |
+
flatted_fields[row] = field["properties"][row]
|
179 |
+
else:
|
180 |
+
flatted_fields[row] = str(field["properties"][row])
|
181 |
+
# flatted_fields = {**flatted_fields, **field["properties"]}
|
182 |
+
nfields.append(flatted_fields)
|
183 |
+
nfields_df = pd.DataFrame(nfields)
|
184 |
+
st.write(nfields_df)
|
185 |
+
else:
|
186 |
+
st.write(str(summary))
|
187 |
+
|
188 |
+
# Step 4 - Generate goals
|
189 |
+
if summary:
|
190 |
+
st.sidebar.write("### Goal Selection")
|
191 |
+
|
192 |
+
num_goals = st.sidebar.slider(
|
193 |
+
"Number of goals to generate",
|
194 |
+
min_value=1,
|
195 |
+
max_value=10,
|
196 |
+
value=4)
|
197 |
+
own_goal = st.sidebar.checkbox("Add Your Own Goal")
|
198 |
+
|
199 |
+
# **** lida.goals *****
|
200 |
+
goals = lida.goals(summary, n=num_goals, textgen_config=textgen_config)
|
201 |
+
st.write(f"## Goals ({len(goals)})")
|
202 |
+
|
203 |
+
default_goal = goals[0].question
|
204 |
+
goal_questions = [goal.question for goal in goals]
|
205 |
+
|
206 |
+
if own_goal:
|
207 |
+
user_goal = st.sidebar.text_input("Describe Your Goal")
|
208 |
+
|
209 |
+
if user_goal:
|
210 |
+
|
211 |
+
new_goal = Goal(question=user_goal, visualization=user_goal, rationale="")
|
212 |
+
goals.append(new_goal)
|
213 |
+
goal_questions.append(new_goal.question)
|
214 |
+
|
215 |
+
selected_goal = st.selectbox('Choose a generated goal', options=goal_questions, index=0)
|
216 |
+
|
217 |
+
# st.markdown("### Selected Goal")
|
218 |
+
selected_goal_index = goal_questions.index(selected_goal)
|
219 |
+
st.write(goals[selected_goal_index])
|
220 |
+
|
221 |
+
selected_goal_object = goals[selected_goal_index]
|
222 |
+
|
223 |
+
# Step 5 - Generate visualizations
|
224 |
+
if selected_goal_object:
|
225 |
+
st.sidebar.write("## Visualization Library")
|
226 |
+
visualization_libraries = ["seaborn", "matplotlib", "plotly"]
|
227 |
+
|
228 |
+
selected_library = st.sidebar.selectbox(
|
229 |
+
'Choose a visualization library',
|
230 |
+
options=visualization_libraries,
|
231 |
+
index=0
|
232 |
+
)
|
233 |
+
|
234 |
+
# Update the visualization generation call to use the selected library.
|
235 |
+
st.write("## Visualizations")
|
236 |
+
|
237 |
+
# slider for number of visualizations
|
238 |
+
num_visualizations = st.sidebar.slider(
|
239 |
+
"Number of visualizations to generate",
|
240 |
+
min_value=1,
|
241 |
+
max_value=10,
|
242 |
+
value=2)
|
243 |
+
|
244 |
+
textgen_config = TextGenerationConfig(
|
245 |
+
n=num_visualizations, temperature=temperature,
|
246 |
+
model=selected_model,
|
247 |
+
use_cache=use_cache)
|
248 |
+
|
249 |
+
# **** lida.visualize *****
|
250 |
+
visualizations = lida.visualize(
|
251 |
+
summary=summary,
|
252 |
+
goal=selected_goal_object,
|
253 |
+
textgen_config=textgen_config,
|
254 |
+
library=selected_library)
|
255 |
+
|
256 |
+
viz_titles = [f'Visualization {i+1}' for i in range(len(visualizations))]
|
257 |
+
|
258 |
+
selected_viz_title = st.selectbox('Choose a visualization', options=viz_titles, index=0)
|
259 |
+
|
260 |
+
selected_viz = visualizations[viz_titles.index(selected_viz_title)]
|
261 |
+
|
262 |
+
if selected_viz.raster:
|
263 |
+
from PIL import Image
|
264 |
+
import io
|
265 |
+
import base64
|
266 |
+
|
267 |
+
imgdata = base64.b64decode(selected_viz.raster)
|
268 |
+
img = Image.open(io.BytesIO(imgdata))
|
269 |
+
st.image(img, caption=selected_viz_title, use_column_width=True)
|
270 |
+
|
271 |
+
st.write("### Visualization Code")
|
272 |
+
st.code(selected_viz.code)
|