Aqdas commited on
Commit
95079e7
1 Parent(s): 46cbdd1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +272 -0
app.py ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from lida import Manager, TextGenerationConfig, llm
3
+ from lida.datamodel import Goal
4
+ import os
5
+ import pandas as pd
6
+
7
+
8
+ # make data dir if it doesn't exist
9
+ os.makedirs("data", exist_ok=True)
10
+
11
+ st.set_page_config(
12
+ page_title="LIDA: Automatic Generation of Visualizations and Infographics",
13
+ page_icon="📊",
14
+ )
15
+
16
+ st.write("# LIDA: Automatic Generation of Visualizations and Infographics using Large Language Models 📊")
17
+
18
+ st.sidebar.write("## Setup")
19
+
20
+ # Step 1 - Get OpenAI API key
21
+ openai_key = os.getenv("OPENAI_API_KEY")
22
+
23
+ if not openai_key:
24
+ openai_key = st.sidebar.text_input("Enter OpenAI API key:")
25
+ if openai_key:
26
+ display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:]
27
+ st.sidebar.write(f"Current key: {display_key}")
28
+ else:
29
+ st.sidebar.write("Please enter OpenAI API key.")
30
+ else:
31
+ display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:]
32
+ st.sidebar.write(f"OpenAI API key loaded from environment variable: {display_key}")
33
+
34
+ st.markdown(
35
+ """
36
+ LIDA is a library for generating data visualizations and data-faithful infographics.
37
+ LIDA is grammar agnostic (will work with any programming language and visualization
38
+ libraries e.g. matplotlib, seaborn, altair, d3 etc) and works with multiple large language
39
+ model providers (OpenAI, Azure OpenAI, PaLM, Cohere, Huggingface). Details on the components
40
+ of LIDA are described in the [paper here](https://arxiv.org/abs/2303.02927) and in this
41
+ tutorial [notebook](notebooks/tutorial.ipynb). See the project page [here](https://microsoft.github.io/lida/) for updates!.
42
+
43
+ This demo shows how to use the LIDA python api with Streamlit. [More](/about).
44
+
45
+ ----
46
+ """)
47
+
48
+ # Step 2 - Select a dataset and summarization method
49
+ if openai_key:
50
+ # Initialize selected_dataset to None
51
+ selected_dataset = None
52
+
53
+ # select model from gpt-4 , gpt-3.5-turbo, gpt-3.5-turbo-16k
54
+ st.sidebar.write("## Text Generation Model")
55
+ models = ["gpt-4", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"]
56
+ selected_model = st.sidebar.selectbox(
57
+ 'Choose a model',
58
+ options=models,
59
+ index=0
60
+ )
61
+
62
+ # select temperature on a scale of 0.0 to 1.0
63
+ # st.sidebar.write("## Text Generation Temperature")
64
+ temperature = st.sidebar.slider(
65
+ "Temperature",
66
+ min_value=0.0,
67
+ max_value=1.0,
68
+ value=0.0)
69
+
70
+ # set use_cache in sidebar
71
+ use_cache = st.sidebar.checkbox("Use cache", value=True)
72
+
73
+ # Handle dataset selection and upload
74
+ st.sidebar.write("## Data Summarization")
75
+ st.sidebar.write("### Choose a dataset")
76
+
77
+ datasets = [
78
+ {"label": "Select a dataset", "url": None},
79
+ {"label": "Cars", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/cars.csv"},
80
+ {"label": "Weather", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/weather.json"},
81
+ ]
82
+
83
+ selected_dataset_label = st.sidebar.selectbox(
84
+ 'Choose a dataset',
85
+ options=[dataset["label"] for dataset in datasets],
86
+ index=0
87
+ )
88
+
89
+ upload_own_data = st.sidebar.checkbox("Upload your own data")
90
+
91
+ if upload_own_data:
92
+ uploaded_file = st.sidebar.file_uploader("Choose a CSV or JSON file", type=["csv", "json"])
93
+
94
+ if uploaded_file is not None:
95
+ # Get the original file name and extension
96
+ file_name, file_extension = os.path.splitext(uploaded_file.name)
97
+
98
+ # Load the data depending on the file type
99
+ if file_extension.lower() == ".csv":
100
+ data = pd.read_csv(uploaded_file)
101
+ elif file_extension.lower() == ".json":
102
+ data = pd.read_json(uploaded_file)
103
+
104
+ # Save the data using the original file name in the data dir
105
+ uploaded_file_path = os.path.join("data", uploaded_file.name)
106
+ data.to_csv(uploaded_file_path, index=False)
107
+
108
+ selected_dataset = uploaded_file_path
109
+
110
+ datasets.append({"label": file_name, "url": uploaded_file_path})
111
+
112
+ # st.sidebar.write("Uploaded file path: ", uploaded_file_path)
113
+ else:
114
+ selected_dataset = datasets[[dataset["label"]
115
+ for dataset in datasets].index(selected_dataset_label)]["url"]
116
+
117
+ if not selected_dataset:
118
+ st.info("To continue, select a dataset from the sidebar on the left or upload your own.")
119
+
120
+ st.sidebar.write("### Choose a summarization method")
121
+ # summarization_methods = ["default", "llm", "columns"]
122
+ summarization_methods = [
123
+ {"label": "llm",
124
+ "description":
125
+ "Uses the LLM to generate annotate the default summary, adding details such as semantic types for columns and dataset description"},
126
+ {"label": "default",
127
+ "description": "Uses dataset column statistics and column names as the summary"},
128
+
129
+ {"label": "columns", "description": "Uses the dataset column names as the summary"}]
130
+
131
+ # selected_method = st.sidebar.selectbox("Choose a method", options=summarization_methods)
132
+ selected_method_label = st.sidebar.selectbox(
133
+ 'Choose a method',
134
+ options=[method["label"] for method in summarization_methods],
135
+ index=0
136
+ )
137
+
138
+ selected_method = summarization_methods[[
139
+ method["label"] for method in summarization_methods].index(selected_method_label)]["label"]
140
+
141
+ # add description of selected method in very small font to sidebar
142
+ selected_summary_method_description = summarization_methods[[
143
+ method["label"] for method in summarization_methods].index(selected_method_label)]["description"]
144
+
145
+ if selected_method:
146
+ st.sidebar.markdown(
147
+ f"<span> {selected_summary_method_description} </span>",
148
+ unsafe_allow_html=True)
149
+
150
+ # Step 3 - Generate data summary
151
+ if openai_key and selected_dataset and selected_method:
152
+ lida = Manager(text_gen=llm("openai", api_key=openai_key))
153
+ textgen_config = TextGenerationConfig(
154
+ n=1,
155
+ temperature=temperature,
156
+ model=selected_model,
157
+ use_cache=use_cache)
158
+
159
+ st.write("## Summary")
160
+ # **** lida.summarize *****
161
+ summary = lida.summarize(
162
+ selected_dataset,
163
+ summary_method=selected_method,
164
+ textgen_config=textgen_config)
165
+
166
+ if "dataset_description" in summary:
167
+ st.write(summary["dataset_description"])
168
+
169
+ if "fields" in summary:
170
+ fields = summary["fields"]
171
+ nfields = []
172
+ for field in fields:
173
+ flatted_fields = {}
174
+ flatted_fields["column"] = field["column"]
175
+ # flatted_fields["dtype"] = field["dtype"]
176
+ for row in field["properties"].keys():
177
+ if row != "samples":
178
+ flatted_fields[row] = field["properties"][row]
179
+ else:
180
+ flatted_fields[row] = str(field["properties"][row])
181
+ # flatted_fields = {**flatted_fields, **field["properties"]}
182
+ nfields.append(flatted_fields)
183
+ nfields_df = pd.DataFrame(nfields)
184
+ st.write(nfields_df)
185
+ else:
186
+ st.write(str(summary))
187
+
188
+ # Step 4 - Generate goals
189
+ if summary:
190
+ st.sidebar.write("### Goal Selection")
191
+
192
+ num_goals = st.sidebar.slider(
193
+ "Number of goals to generate",
194
+ min_value=1,
195
+ max_value=10,
196
+ value=4)
197
+ own_goal = st.sidebar.checkbox("Add Your Own Goal")
198
+
199
+ # **** lida.goals *****
200
+ goals = lida.goals(summary, n=num_goals, textgen_config=textgen_config)
201
+ st.write(f"## Goals ({len(goals)})")
202
+
203
+ default_goal = goals[0].question
204
+ goal_questions = [goal.question for goal in goals]
205
+
206
+ if own_goal:
207
+ user_goal = st.sidebar.text_input("Describe Your Goal")
208
+
209
+ if user_goal:
210
+
211
+ new_goal = Goal(question=user_goal, visualization=user_goal, rationale="")
212
+ goals.append(new_goal)
213
+ goal_questions.append(new_goal.question)
214
+
215
+ selected_goal = st.selectbox('Choose a generated goal', options=goal_questions, index=0)
216
+
217
+ # st.markdown("### Selected Goal")
218
+ selected_goal_index = goal_questions.index(selected_goal)
219
+ st.write(goals[selected_goal_index])
220
+
221
+ selected_goal_object = goals[selected_goal_index]
222
+
223
+ # Step 5 - Generate visualizations
224
+ if selected_goal_object:
225
+ st.sidebar.write("## Visualization Library")
226
+ visualization_libraries = ["seaborn", "matplotlib", "plotly"]
227
+
228
+ selected_library = st.sidebar.selectbox(
229
+ 'Choose a visualization library',
230
+ options=visualization_libraries,
231
+ index=0
232
+ )
233
+
234
+ # Update the visualization generation call to use the selected library.
235
+ st.write("## Visualizations")
236
+
237
+ # slider for number of visualizations
238
+ num_visualizations = st.sidebar.slider(
239
+ "Number of visualizations to generate",
240
+ min_value=1,
241
+ max_value=10,
242
+ value=2)
243
+
244
+ textgen_config = TextGenerationConfig(
245
+ n=num_visualizations, temperature=temperature,
246
+ model=selected_model,
247
+ use_cache=use_cache)
248
+
249
+ # **** lida.visualize *****
250
+ visualizations = lida.visualize(
251
+ summary=summary,
252
+ goal=selected_goal_object,
253
+ textgen_config=textgen_config,
254
+ library=selected_library)
255
+
256
+ viz_titles = [f'Visualization {i+1}' for i in range(len(visualizations))]
257
+
258
+ selected_viz_title = st.selectbox('Choose a visualization', options=viz_titles, index=0)
259
+
260
+ selected_viz = visualizations[viz_titles.index(selected_viz_title)]
261
+
262
+ if selected_viz.raster:
263
+ from PIL import Image
264
+ import io
265
+ import base64
266
+
267
+ imgdata = base64.b64decode(selected_viz.raster)
268
+ img = Image.open(io.BytesIO(imgdata))
269
+ st.image(img, caption=selected_viz_title, use_column_width=True)
270
+
271
+ st.write("### Visualization Code")
272
+ st.code(selected_viz.code)