File size: 5,601 Bytes
1f6053d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d25ea01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import pandas as pd
from flask import Flask, render_template, request
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import json
import bs4 as bs
import urllib.request
import pickle
import requests
from datetime import date, datetime

# load the nlp model and tfidf vectorizer from disk
filename = 'nlp_model.pkl'
clf = pickle.load(open(filename, 'rb'))
vectorizer = pickle.load(open('tranform.pkl','rb'))
    
# converting list of string to list (eg. "["abc","def"]" to ["abc","def"])
def convert_to_list(my_list):
    my_list = my_list.split('","')
    my_list[0] = my_list[0].replace('["','')
    my_list[-1] = my_list[-1].replace('"]','')
    return my_list

# convert list of numbers to list (eg. "[1,2,3]" to [1,2,3])
def convert_to_list_num(my_list):
    my_list = my_list.split(',')
    my_list[0] = my_list[0].replace("[","")
    my_list[-1] = my_list[-1].replace("]","")
    return my_list

def get_suggestions():
    data = pd.read_csv('main_data.csv')
    return list(data['movie_title'].str.capitalize())

app = Flask(__name__)

@app.route("/")
@app.route("/home")
def home():
    suggestions = get_suggestions()
    return render_template('home.html',suggestions=suggestions)


@app.route("/recommend",methods=["POST"])
def recommend():
    # getting data from AJAX request
    title = request.form['title']
    cast_ids = request.form['cast_ids']
    cast_names = request.form['cast_names']
    cast_chars = request.form['cast_chars']
    cast_bdays = request.form['cast_bdays']
    cast_bios = request.form['cast_bios']
    cast_places = request.form['cast_places']
    cast_profiles = request.form['cast_profiles']
    imdb_id = request.form['imdb_id']
    poster = request.form['poster']
    genres = request.form['genres']
    overview = request.form['overview']
    vote_average = request.form['rating']
    vote_count = request.form['vote_count']
    rel_date = request.form['rel_date']
    release_date = request.form['release_date']
    runtime = request.form['runtime']
    status = request.form['status']
    rec_movies = request.form['rec_movies']
    rec_posters = request.form['rec_posters']
    rec_movies_org = request.form['rec_movies_org']
    rec_year = request.form['rec_year']
    rec_vote = request.form['rec_vote']

    # get movie suggestions for auto complete
    suggestions = get_suggestions()

    # call the convert_to_list function for every string that needs to be converted to list
    rec_movies_org = convert_to_list(rec_movies_org)
    rec_movies = convert_to_list(rec_movies)
    rec_posters = convert_to_list(rec_posters)
    cast_names = convert_to_list(cast_names)
    cast_chars = convert_to_list(cast_chars)
    cast_profiles = convert_to_list(cast_profiles)
    cast_bdays = convert_to_list(cast_bdays)
    cast_bios = convert_to_list(cast_bios)
    cast_places = convert_to_list(cast_places)
    
    # convert string to list (eg. "[1,2,3]" to [1,2,3])
    cast_ids = convert_to_list_num(cast_ids)
    rec_vote = convert_to_list_num(rec_vote)
    rec_year = convert_to_list_num(rec_year)
    
    # rendering the string to python string
    for i in range(len(cast_bios)):
        cast_bios[i] = cast_bios[i].replace(r'\n', '\n').replace(r'\"','\"')

    for i in range(len(cast_chars)):
        cast_chars[i] = cast_chars[i].replace(r'\n', '\n').replace(r'\"','\"') 
    
    # combining multiple lists as a dictionary which can be passed to the html file so that it can be processed easily and the order of information will be preserved
    movie_cards = {rec_posters[i]: [rec_movies[i],rec_movies_org[i],rec_vote[i],rec_year[i]] for i in range(len(rec_posters))}

    casts = {cast_names[i]:[cast_ids[i], cast_chars[i], cast_profiles[i]] for i in range(len(cast_profiles))}

    cast_details = {cast_names[i]:[cast_ids[i], cast_profiles[i], cast_bdays[i], cast_places[i], cast_bios[i]] for i in range(len(cast_places))}

    # web scraping to get user reviews from IMDB site
    sauce = urllib.request.urlopen('https://www.imdb.com/title/{}/reviews?ref_=tt_ov_rt'.format(imdb_id)).read()
    soup = bs.BeautifulSoup(sauce,'lxml')
    soup_result = soup.find_all("div",{"class":"text show-more__control"})

    reviews_list = [] # list of reviews
    reviews_status = [] # list of comments (good or bad)
    for reviews in soup_result:
        if reviews.string:
            reviews_list.append(reviews.string)
            # passing the review to our model
            movie_review_list = np.array([reviews.string])
            movie_vector = vectorizer.transform(movie_review_list)
            pred = clf.predict(movie_vector)
            reviews_status.append('Positive' if pred else 'Negative')

    # getting current date
    movie_rel_date = ""
    curr_date = ""
    if(rel_date):
        today = str(date.today())
        curr_date = datetime.strptime(today,'%Y-%m-%d')
        movie_rel_date = datetime.strptime(rel_date, '%Y-%m-%d')

    # combining reviews and comments into a dictionary
    movie_reviews = {reviews_list[i]: reviews_status[i] for i in range(len(reviews_list))}     

    # passing all the data to the html file
    return render_template('recommend.html',title=title,poster=poster,overview=overview,vote_average=vote_average,
        vote_count=vote_count,release_date=release_date,movie_rel_date=movie_rel_date,curr_date=curr_date,runtime=runtime,status=status,genres=genres,movie_cards=movie_cards,reviews=movie_reviews,casts=casts,cast_details=cast_details)

if __name__ == '__main__':
    app.run(host="0.0.0.0", port=7860)