Spaces:
Sleeping
Sleeping
import pandas | |
import nltk | |
nltk.download('wordnet') | |
# load the dataset | |
dataset = pandas.read_csv('covid_abstracts.csv') | |
dataset.head() | |
#Fetch wordcount for each abstract | |
dataset['word_count'] = dataset['title'].apply(lambda x: len(str(x).split(" "))) | |
dataset[['title','word_count']].head() | |
##Descriptive statistics of word counts | |
dataset.word_count.describe() | |
#Identify common words | |
freq = pandas.Series(' '.join(dataset['title'].astype(str)).split()).value_counts()[:20] | |
#freq = pandas.Series(' '.join(dataset['title']).split()).value_counts()[:20] | |
freq | |
#Identify uncommon words | |
freq1 = pandas.Series(' '.join(dataset['title'].astype(str)).split()).value_counts()[-20:] | |
#freq1 = pandas.Series(' '.join(dataset | |
# ['title']).split()).value_counts()[-20:] | |
freq1 | |
from nltk.stem.porter import PorterStemmer | |
from nltk.stem.wordnet import WordNetLemmatizer | |
lem = WordNetLemmatizer() | |
stem = PorterStemmer() | |
word = "cryptogenic" | |
print("stemming:",stem.stem(word)) | |
print("lemmatization:", lem.lemmatize(word, "v")) | |
import nltk | |
nltk.download('wordnet') | |
# Libraries for text preprocessing | |
import re | |
import nltk | |
nltk.download('stopwords') | |
from nltk.corpus import stopwords | |
from nltk.stem.porter import PorterStemmer | |
from nltk.tokenize import RegexpTokenizer | |
#nltk.download('wordnet') | |
from nltk.stem.wordnet import WordNetLemmatizer | |
##Creating a list of stop words and adding custom stopwords | |
stop_words = set(stopwords.words("english")) | |
##Creating a list of custom stopwords | |
new_words = ["using", "show", "result", "large", "also", "iv", "one", "two", "new", "previously", "shown"] | |
stop_words = stop_words.union(new_words) | |
print(stop_words) | |
print(new_words) | |
corpus = [] | |
for i in range(0, 3847): | |
#Remove punctuations | |
text = re.sub('[^a-zA-Z]', ' ', dataset['title'][i]) | |
#Convert to lowercase | |
text = text.lower() | |
#remove tags | |
text=re.sub("</?.*?>"," <> ",text) | |
# remove special characters and digits | |
text=re.sub("(\\d|\\W)+"," ",text) | |
##Convert to list from string | |
text = text.split() | |
##Stemming | |
ps=PorterStemmer() | |
#Lemmatisation | |
lem = WordNetLemmatizer() | |
text = [lem.lemmatize(word) for word in text if not word in | |
stop_words] | |
text = " ".join(text) | |
corpus.append(text) | |
#View corpus item | |
corpus[222] | |
#View corpus item | |
corpus[300] | |
#Word cloud | |
from os import path | |
from PIL import Image | |
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator | |
import matplotlib.pyplot as plt | |
wordcloud = WordCloud( | |
background_color='white', | |
stopwords=stop_words, | |
max_words=100, | |
max_font_size=50, | |
random_state=42 | |
).generate(str(corpus)) | |
print(wordcloud) | |
fig = plt.figure(1) | |
plt.imshow(wordcloud) | |
plt.axis('off') | |
plt.show() | |
fig.savefig("word1.png", dpi=900) | |
from sklearn.feature_extraction.text import CountVectorizer | |
import re | |
# Assuming you have the 'corpus' defined | |
# and 'stop_words' defined as in your previous code | |
# Create a CountVectorizer with predefined English stop words | |
cv = CountVectorizer(max_df=0.8, stop_words='english', max_features=10000, ngram_range=(1, 3)) | |
X = cv.fit_transform(corpus) | |
# Alternatively, use your custom stop words | |
custom_stop_words = ['same', 'hers', 'they', 'with', 'if', 'y', 'iv', 'new', ...] # Add your custom stop words | |
cv = CountVectorizer(max_df=0.8, stop_words=custom_stop_words, max_features=10000, ngram_range=(1, 3)) | |
X = cv.fit_transform(corpus) | |
#from sklearn.feature_extraction.text import CountVectorizer | |
#import re | |
#cv=CountVectorizer(max_df=0.8,stop_words=stop_words, max_features=10000, ngram_range=(1,3)) | |
#X=cv.fit_transform(corpus) | |
from sklearn.feature_extraction.text import CountVectorizer | |
cv = CountVectorizer(max_df=0.8, stop_words='english', max_features=10000, ngram_range=(1,3)) | |
X = cv.fit_transform(corpus) | |
custom_stop_words = ['from', 'to', 'against', 'each', 'own', ...] # Add your custom stop words | |
cv = CountVectorizer(max_df=0.8, stop_words=custom_stop_words, max_features=10000, ngram_range=(1,3)) | |
X = cv.fit_transform(corpus) | |
list(cv.vocabulary_.keys())[:10] | |
#Most frequently occuring words | |
def get_top_n_words(corpus, n=None): | |
vec = CountVectorizer().fit(corpus) | |
bag_of_words = vec.transform(corpus) | |
sum_words = bag_of_words.sum(axis=0) | |
words_freq = [(word, sum_words[0, idx]) for word, idx in | |
vec.vocabulary_.items()] | |
words_freq =sorted(words_freq, key = lambda x: x[1], | |
reverse=True) | |
return words_freq[:n] | |
#Convert most freq words to dataframe for plotting bar plot | |
top_words = get_top_n_words(corpus, n=20) | |
top_df = pandas.DataFrame(top_words) | |
top_df.columns=["Word", "Freq"] | |
#Barplot of most freq words | |
import seaborn as sns | |
sns.set(rc={'figure.figsize':(13,8)}) | |
g = sns.barplot(x="Word", y="Freq", data=top_df) | |
g.set_xticklabels(g.get_xticklabels(), rotation=30) | |
#Most frequently occuring Bi-grams | |
def get_top_n2_words(corpus, n=None): | |
vec1 = CountVectorizer(ngram_range=(2,2), | |
max_features=2000).fit(corpus) | |
bag_of_words = vec1.transform(corpus) | |
sum_words = bag_of_words.sum(axis=0) | |
words_freq = [(word, sum_words[0, idx]) for word, idx in | |
vec1.vocabulary_.items()] | |
words_freq =sorted(words_freq, key = lambda x: x[1], | |
reverse=True) | |
return words_freq[:n] | |
top2_words = get_top_n2_words(corpus, n=20) | |
top2_df = pandas.DataFrame(top2_words) | |
top2_df.columns=["Bi-gram", "Freq"] | |
print(top2_df) | |
#Barplot of most freq Bi-grams | |
import seaborn as sns | |
sns.set(rc={'figure.figsize':(13,8)}) | |
h=sns.barplot(x="Bi-gram", y="Freq", data=top2_df) | |
h.set_xticklabels(h.get_xticklabels(), rotation=45) | |
#Most frequently occuring Tri-grams | |
def get_top_n3_words(corpus, n=None): | |
vec1 = CountVectorizer(ngram_range=(3,3), | |
max_features=2000).fit(corpus) | |
bag_of_words = vec1.transform(corpus) | |
sum_words = bag_of_words.sum(axis=0) | |
words_freq = [(word, sum_words[0, idx]) for word, idx in | |
vec1.vocabulary_.items()] | |
words_freq =sorted(words_freq, key = lambda x: x[1], | |
reverse=True) | |
return words_freq[:n] | |
top3_words = get_top_n3_words(corpus, n=20) | |
top3_df = pandas.DataFrame(top3_words) | |
top3_df.columns=["Tri-gram", "Freq"] | |
print(top3_df) | |
#Barplot of most freq Tri-grams | |
import seaborn as sns | |
sns.set(rc={'figure.figsize':(13,8)}) | |
j=sns.barplot(x="Tri-gram", y="Freq", data=top3_df) | |
j.set_xticklabels(j.get_xticklabels(), rotation=45) | |
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer | |
# Assuming you already have the 'corpus' defined | |
# Create a CountVectorizer | |
cv = CountVectorizer(max_df=0.8, stop_words='english', max_features=10000, ngram_range=(1, 3)) | |
# Fit and transform the corpus | |
X = cv.fit_transform(corpus) | |
# Create a TfidfTransformer and fit it to the CountVectorizer output | |
tfidf_transformer = TfidfTransformer(smooth_idf=True, use_idf=True) | |
tfidf_transformer.fit(X) | |
# Get feature names from CountVectorizer | |
feature_names = cv.get_feature_names_out() | |
# Fetch document for which keywords need to be extracted | |
doc = corpus[82] | |
# Generate tf-idf for the given document | |
tf_idf_vector = tfidf_transformer.transform(cv.transform([doc])) | |
# Now you can proceed with your further code | |
#Function for sorting tf_idf in descending order | |
from scipy.sparse import coo_matrix | |
def sort_coo(coo_matrix): | |
tuples = zip(coo_matrix.col, coo_matrix.data) | |
return sorted(tuples, key=lambda x: (x[1], x[0]), reverse=True) | |
def extract_topn_from_vector(feature_names, sorted_items, topn=10): | |
"""get the feature names and tf-idf score of top n items""" | |
#use only top n items from vector | |
sorted_items = sorted_items[:topn] | |
score_vals = [] | |
feature_vals = [] | |
# word index and corresponding tf-idf score | |
for idx, score in sorted_items: | |
#keep track of feature name and its corresponding score | |
score_vals.append(round(score, 3)) | |
feature_vals.append(feature_names[idx]) | |
#create a tuples of feature,score | |
#results = zip(feature_vals,score_vals) | |
results= {} | |
for idx in range(len(feature_vals)): | |
results[feature_vals[idx]]=score_vals[idx] | |
return results | |
#sort the tf-idf vectors by descending order of scores | |
sorted_items=sort_coo(tf_idf_vector.tocoo()) | |
#extract only the top n; n here is 10 | |
keywords=extract_topn_from_vector(feature_names,sorted_items,10) | |
# now print the results | |
print("\nAbstract:") | |
print(doc) | |
print("\nKeywords:") | |
for k in keywords: | |
print(k,keywords[k]) | |
from gensim.models import word2vec | |
tokenized_sentences = [sentence.split() for sentence in corpus] | |
model = word2vec.Word2Vec(tokenized_sentences, min_count=1) | |
model.wv.most_similar(positive=["incidence"]) | |
import nltk | |
#nltk.download('omw-1.4') | |
from nltk.corpus import wordnet as wn | |
wn.synsets('car') | |
wn.synset('car.n.01').definition() | |
import gradio as gr | |
from nltk.corpus import wordnet as wn | |
# Function to get the definition of the first synset for a given word | |
def get_synset_definition(word): | |
synsets = wn.synsets(word) | |
if synsets: | |
first_synset = synsets[0] | |
return first_synset.definition() | |
else: | |
return "No synsets found for the given word." | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=get_synset_definition, | |
inputs=gr.Textbox(), | |
outputs=gr.Textbox(), | |
live=True, | |
title="Key Extraction", | |
description="Enter a word to get the definition of its first WordNet synset.", | |
) | |
# Launch the Gradio interface | |
iface.launch() |