File size: 6,880 Bytes
4916b73
 
 
 
 
 
 
 
 
7677377
4916b73
 
c36a591
4916b73
fd0b130
5c9e3d2
4ad0438
 
4916b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09cf861
5c9e3d2
4ad0438
 
09cf861
4916b73
82c9791
 
4916b73
 
 
82c9791
 
 
 
 
4916b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82c9791
4916b73
7677377
 
 
 
 
 
 
 
 
 
 
04ae7b2
7677377
 
 
 
 
 
 
 
4916b73
7677377
 
4916b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ae7b2
4916b73
 
 
 
04ae7b2
4916b73
 
 
 
 
 
 
 
 
 
eb47857
4916b73
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import colorsys
import os
import gradio as gr
import matplotlib.colors as mcolors
import numpy as np
import torch
from gradio.themes.utils import sizes
from matplotlib import pyplot as plt
from matplotlib.patches import Patch
from PIL import Image, ImageOps
from torchvision import transforms


# ----------------- HELPER FUNCTIONS ----------------- #
os.chdir(os.path.dirname(os.path.abspath(__file__)))
ASSETS_DIR = os.path.join(os.path.dirname(__file__), "assets")
os.makedirs(ASSETS_DIR, exist_ok=True)

LABELS_TO_IDS = {
    "Background": 0,
    "Apparel": 1,
    "Face Neck": 2,
    "Hair": 3,
    "Left Foot": 4,
    "Left Hand": 5,
    "Left Lower Arm": 6,
    "Left Lower Leg": 7,
    "Left Shoe": 8,
    "Left Sock": 9,
    "Left Upper Arm": 10,
    "Left Upper Leg": 11,
    "Lower Clothing": 12,
    "Right Foot": 13,
    "Right Hand": 14,
    "Right Lower Arm": 15,
    "Right Lower Leg": 16,
    "Right Shoe": 17,
    "Right Sock": 18,
    "Right Upper Arm": 19,
    "Right Upper Leg": 20,
    "Torso": 21,
    "Upper Clothing": 22,
    "Lower Lip": 23,
    "Upper Lip": 24,
    "Lower Teeth": 25,
    "Upper Teeth": 26,
    "Tongue": 27,
}

def get_palette(num_cls):
    palette = [0] * (256 * 3)
    palette[0:3] = [0, 0, 0]

    for j in range(1, num_cls):
        hue = (j - 1) / (num_cls - 1)
        saturation = 1.0
        value = 1.0 if j % 2 == 0 else 0.5
        rgb = colorsys.hsv_to_rgb(hue, saturation, value)
        r, g, b = [int(x * 255) for x in rgb]
        palette[j * 3 : j * 3 + 3] = [r, g, b]

    return palette

def create_colormap(palette):
    colormap = np.array(palette).reshape(-1, 3) / 255.0
    return mcolors.ListedColormap(colormap)

def visualize_mask_with_overlay(img: Image.Image, mask: Image.Image, labels_to_ids: dict[str, int], alpha=0.5):
    img_np = np.array(img.convert("RGB"))
    mask_np = np.array(mask)

    num_cls = len(labels_to_ids)
    palette = get_palette(num_cls)
    colormap = create_colormap(palette)

    overlay = np.zeros((*mask_np.shape, 3), dtype=np.uint8)
    for label, idx in labels_to_ids.items():
        if idx != 0:
            overlay[mask_np == idx] = np.array(colormap(idx)[:3]) * 255

    blended = Image.fromarray(np.uint8(img_np * (1 - alpha) + overlay * alpha))

    return blended

def create_legend_image(labels_to_ids: dict[str, int], filename="legend.png"):
    num_cls = len(labels_to_ids)
    palette = get_palette(num_cls)
    colormap = create_colormap(palette)

    fig, ax = plt.subplots(figsize=(4, 6), facecolor="white")

    ax.axis("off")

    legend_elements = [
        Patch(facecolor=colormap(i), edgecolor="black", label=label)
        for label, i in sorted(labels_to_ids.items(), key=lambda x: x[1])
    ]

    plt.title("Legend", fontsize=16, fontweight="bold", pad=20)

    legend = ax.legend(
        handles=legend_elements,
        loc="center",
        bbox_to_anchor=(0.5, 0.5),
        ncol=2,
        frameon=True,
        fancybox=True,
        shadow=True,
        fontsize=10,
        title_fontsize=12,
        borderpad=1,
        labelspacing=1.2,
        handletextpad=0.5,
        handlelength=1.5,
        columnspacing=1.5,
    )

    legend.get_frame().set_facecolor("#FAFAFA")
    legend.get_frame().set_edgecolor("gray")

    # Adjust layout and save
    plt.tight_layout()
    plt.savefig(filename, dpi=300, bbox_inches="tight")
    plt.close()

# ----------------- MODEL ----------------- #

URL = "https://huggingface.co/facebook/sapiens/resolve/main/sapiens_lite_host/torchscript/pose/checkpoints/sapiens_1b/sapiens_1b_goliath_best_goliath_AP_640_torchscript.pt2?download=true"
CHECKPOINTS_DIR = os.path.join(ASSETS_DIR, "checkpoints")
os.makedirs(CHECKPOINTS_DIR, exist_ok=True)

model_path = os.path.join(CHECKPOINTS_DIR, "sapiens_1b_goliath_best_goliath_AP_640_torchscript.pt2")

if not os.path.exists(model_path) or os.path.getsize(model_path) == 0:
    print("Downloading model...")
    import requests

    response = requests.get(URL)
    if response.status_code == 200:
        with open(model_path, "wb") as file:
            file.write(response.content)
    else:
        raise Exception("Failed to download the model. Please check the URL.")

model = torch.jit.load(model_path)
model.eval()

@torch.no_grad()
def run_model(input_tensor, height, width):
    output = model(input_tensor)
    output = torch.nn.functional.interpolate(output, size=(height, width), mode="bilinear", align_corners=False)
    _, preds = torch.max(output, 1)
    return preds

transform_fn = transforms.Compose(
    [
        transforms.Resize((1024, 768)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ]
)

# ----------------- CORE FUNCTION ----------------- #

def resize_and_pad(image: Image.Image, target_size=(768, 1024)):
    img_ratio = image.width / image.height
    target_ratio = target_size[0] / target_size[1]

    if img_ratio > target_ratio:
        new_width = target_size[0]
        new_height = int(target_size[0] / img_ratio)
    else:
        new_height = target_size[1]
        new_width = int(target_size[1] * img_ratio)

    resized_image = image.resize((new_width, new_height), Image.LANCZOS)

    delta_w = target_size[0] - new_width
    delta_h = target_size[1] - new_height
    padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
    padded_image = ImageOps.expand(resized_image, padding, fill="black")

    return padded_image

def segment(image: Image.Image) -> Image.Image:
    image = resize_and_pad(image, target_size=(768, 1024))
    
    input_tensor = transform_fn(image).unsqueeze(0)
    preds = run_model(input_tensor, height=image.height, width=image.width)
    mask = preds.squeeze(0).cpu().numpy()
    mask_image = Image.fromarray(mask.astype("uint8"))
    blended_image = visualize_mask_with_overlay(image, mask_image, LABELS_TO_IDS, alpha=0.5)
    return blended_image

# ----------------- GRADIO UI ----------------- #

with open("banner.html", "r") as file:
    banner = file.read()
with open("tips.html", "r") as file:
    tips = file.read()

CUSTOM_CSS = """
.image-container img {
    max-width: 512px;
    max-height: 512px;
    margin: 0 auto;
    border-radius: 0px;
}
.gradio-container {background-color: #fafafa}
"""

with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Monochrome(radius_size=sizes.radius_md)) as demo:
    gr.HTML(banner)
    gr.HTML(tips)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="pil", format="png")
        with gr.Column():
            result_image = gr.Image(label="Depth Output", format="png")
            run_button = gr.Button("Run")

    run_button.click(
        fn=segment,
        inputs=[input_image],
        outputs=[result_image],
    )

if __name__ == "__main__":
    demo.launch(share=False)